能级排列,并抑制钙钛矿表面的非辐射复合。基于该策略,涂布制备的带隙1.67 eV钙钛矿太阳能电池实现了22.0%的功率转换效率。这一方法有望在突破现有性能瓶颈、推动钙钛矿太阳能电池逼近理论效率极限
优异的缺陷钝化效果的同时,减轻去质子化引起的不稳定性。脒基钝化不仅有利于形成热稳定的二维/三维异质结构,还能抑制非辐射复合并增强载流子输运动力学。采用基于脒基体相和表面钝化的钙钛矿太阳能电池,二维/三维
二维/三维钙钛矿异质结是提升钙钛矿太阳能电池效率和稳定性的一种有效途径。然而,传统的二维/三维异质结构采用铵基间隔阳离子,其高温光稳定性受到去质子化反应的严重限制,阻碍了其实际应用。鉴于此,西安交通
文章介绍所有钙钛矿叠层太阳能电池(PTSC)都有望克服单结钙钛矿太阳能电池(PSC)的肖克利-奎塞尔极限。然而,由于广泛的薄膜缺陷、界面退化和相分离,宽带隙(WBG)子电池会遭受较大的光电压损失
抑制了叠层电池中的界面光降解问题。效率提升:采用这种策略的全钙钛矿叠层太阳能电池实现了更高的光电转换效率。稳定性增强:优化后的电池展现出更好的长期运行稳定性,这对于叠层太阳能电池的实际应用至关重要
文章介绍反式钙钛矿太阳能电池(PSCs)在自组装分子(SAMs)技术进步的推动下取得了快速的发展。然而,实现基底上均匀的SAM覆盖仍然是一个挑战,这直接影响着器件的性能和稳定性。基于此,南开大学姜源
界面工程的突破:PhPAPy
SAM的成功开发为钙钛矿太阳能电池的HTL设计提供了新的思路。其通过分子结构设计实现均匀覆盖和界面优化的方法,为解决SAM在基底上均匀性问题提供了有效的解决方案。器件
界面可靠性是钙钛矿型太阳能电池长期稳定性的关键,而钙钛矿-衬底界面是高效器件中最脆弱的部分。鉴于此,华东理工大学郑伟中&吴永真&朱为宏&香港中文大学Martin
Stolterfoht在期刊
钝化了表面缺陷。未来展望:1.扩展到其他多层结构设备:文档指出,设计结合了聚合物电荷传输层的策略可以普遍应用于其他多层结构设备。未来的研究可以探索这种双侧面锚定技术在有机光伏器件、发光二极管(LED
中的诱导效应对于优化宽带隙钙钛矿电池的性能至关重要。宽带隙钙钛矿电池:通过利用感应效应,科研人员能够制造出更高效的宽带隙钙钛矿太阳能电池。叠层太阳能电池效率提升:这种宽带隙钙钛矿电池特别适合用于制造
高效的钙钛矿/TOPCon叠层太阳能电池。研究内容:该研究专注于通过分子设计和界面工程来提高钙钛矿太阳能电池的性能。科研团队通过精确调控分子接触中的电子结构,利用感应效应优化了宽带隙钙钛矿材料的能带结构
,如下图所示。然而,在实际工况下,组件是否能一直垂直于太阳光呢?答案是否定的。因为,大多数光伏组件以固定方式安装在地球表面,是否能接受垂直光线,取决于太阳入射角度,每日太阳入射角度(通常指太阳高度角,即
开发低维钙钛矿来增强单结和叠层太阳能电池对于提高光伏性能和耐用性具有重要意义。近日,深圳职业技术大学胡汉林、林浩然、周康、武汉理工大学朱泉峣、孙华君介绍了一种基于1,3-噻唑-2-甲酰亚胺(TZC
提高结晶度来调节钙钛矿结晶动力学。除了有效钝化表面缺陷和抑制非辐射复合外,TZC使1D钙钛矿还表现出明显的n型掺杂特性,导致费米能级升高(从-4.63
eV提高到-4.44 eV),并有助于改善
尽管倒置钙钛矿太阳能电池取得了显著进展,但其商业化仍然受到结晶不足和不利界面状态导致的效率和稳定性低下问题的阻碍。在此,中国科学院黄少铭、北京科技大学康卓、广东工业大学吴华林合成了一种名为
基团的12-SD-COF从前体溶液中挤出到埋入界面、表面和晶界上,促进了定向结晶,同时消除了钙钛矿缺陷,从而产生了高质量的晶体,抑制了非辐射复合。同时,p型掺杂优化的能级排列和诱导的分子内电场协同促进
埋界面缺陷和界面能失配是钙钛矿太阳能电池的关键挑战,它们会导致严重的载流子非辐射复合并引入衰减中心,从而限制器件性能。尤其是埋界面处的空隙形成、粘附性差和界面缺陷等问题,会严重影响钙钛矿太阳能电池的
Assistance for Buried Interfaces in Perovskite Solar
Cells”的文章。本研究提出了一种基于甲脒的原位配位(F-ISS)策略来优化正常结构钙钛矿太阳