,上述团队共联合承担科研科技部973、863项目、国家自然科学基金以及省市科技项目50余项,总经费2600多万元,在Nature-Chemistry,J. Am. Chem. Soc.,Energy
微电网仿真与实验平台顺利建成。结合平台,中国电科院新能源所相继开展了大量相关的实验和科研工作,包括1项国家863、4项公司重大科技项目、17项专题研究,4项国家标准、1项行业标准和4项企业标准,其中
材料、高性能储氢材料、氢氘分离、生物基复合能源材料方面取得了重要进展。近三年,上述团队共联合承担科研科技部973、863项目、国家自然科学基金以及省市科技项目50余项,总经费2600多万元,在
于发展高性能可见光光催化材料。据了解,该工作已得到了中国国家自然科学基金委重大研究项目、科技部973项目和中科院太阳能行动计划的资助。
的吸收范围等途径,使电池未来的效率能够得到进一步提升。 二氧化钛光催化材料 实现全谱吸收近日,中科院金属研究所沈阳材料科学国家(联合)实验室提出,利用间隙原子弱化金属原子与氧(M-O)的键合实现
,所得DSSC的光电转换效率达到9.4%,比传统光阳极结构提高16%。上述工作为开发新一代具有可控微结构及高光电转换效率的染料敏化光伏电池提供了有益思路。该研究得到了国家自然科学基金项目(项目编号
国家工程研究中心的一个工作人员向驻足参观的来宾们介绍。据悉,这个储能系统犹如一块可以储存电量的蓄电池,具有安全性能高、稳定性能强、使用寿命长、放电功率大、可循环利用、绿色节能无污染、可灵活分布等优点
太阳能电池提供了有益思路。该研究得到了国家自然科学基金项目(项目编号:(51072214、51002174、51102261)的资助和支持。相关论文发表于Adv. Mater., 2011, 23
组成部分,采用有序、多功能的新型纳米结构替代传统由纳米颗粒构成的无序光阳极,是DSSC基础研究领域的前沿和难点。中科院上海硅酸盐高性能陶瓷与超微结构国家重点实验室近期在DSSC纳米结构光阳极方面取得了
,实现了可见光全谱强吸收,将二氧化钛光电解水产氢的活性光响应范围拓展至700纳米。研究人员还系统研究了可见光全谱吸收二氧化钛掺杂的原子键尺度理论机制。该研究得到国家自然科学基金委重大研究项目、科技部973项目和中科院太阳能行动计划的资助。
染料敏化太阳电池因其材料来源广泛、成本低廉、光电转化效率高而受到广泛关注。在国家自然科学基金委、科技部和中国科学院的支持下,化学所新材料实验室相关研究人员在染料敏化太阳能电池相关研究方面取得了一系列
在【Advanced Functional Materials,DOI: 10.1002/adfm.201201831】上。上述研究工作得到了国家自然科学基金委、科技部和中国科学院百人计划项目的支持。(来源:中科院物理研究所)
进一步从微观上调控、优化和提高太阳能转化效率提供了新的办法。相关结果发表在【Advanced Functional Materials,DOI: 10.1002/adfm.201201831】上。 上述研究工作得到了国家自然科学基金委、科技部和中国科学院百人计划项目的支持。(来源:中科院物理研究所)
Science(2012, DOI:10.1039/C2EE22930G)。该工作得到了国家自然科学基金委重大研究项目、科技部973项目和中科院太阳能行动计划的资助。图a:红色TiO2的照片;图b:红色和白色TiO2的紫外-可见吸收光谱