工程学院南开大学电子信息与光学工程各学科是在实力雄厚的物理学科的基础上发展起来的。于1995年在原电子科学系与现代光学研究所、光电子薄膜器件与技术研究所和计算机与系统科学系的基础上,组建了信息技术
电子信息与光学工程学院和计算机与控制工程学院。学院下设5个系(电子科学与工程系、微电子工程系、电子信息工程系、通信工程系、光电子技术科学系),2个研究所(现代光学研究所、光电子薄膜器件与技术研究所)、1个
1995年在原电子科学系与现代光学研究所、光电子薄膜器件与技术研究所和计算机与系统科学系的基础上,组建了信息技术科学学院。1999年学院开始实体化运作。经过十余年的建设,学院所属六个一级学科(计算机科学
、微电子工程系、电子信息工程系、通信工程系、光电子技术科学系),2个研究所(现代光学研究所、光电子薄膜器件与技术研究所)、1个电子信息实验教学中心和1个IC设计中心(微电子研究所)(与泰达学院共建
观碳纳米管薄膜具有良好的力学、电学、光学等性质,而且是柔性的。通过调节生长参数,可以获得高透光率(可达95%)、高电导率(105 S m-1)的碳纳米管薄膜。碳纳米管和硅可以在室温下形成p-n结
结构产生的协同效应。该工作提供了一种高效、高重复性、易大面积制备的基于有机物和CNT网络复合薄膜的光伏器件。相关研究结果发表在《纳米能源》(Nano Energy,2017, 33, 436-444)上
薄膜具有良好的力学、电学、光学等性质,而且是柔性的。通过调节生长参数,可以获得高透光率(可达95%)、高电导率(105 S m-1)的碳纳米管薄膜。碳纳米管和硅可以在室温下形成p-n结,无需传统硅基
协同效应。该工作提供了一种高效、高重复性、易大面积制备的基于有机物和CNT网络复合薄膜的光伏器件。相关研究结果发表在Nano Energy(2017, 33, 436-444)上。该工作得到了科技部
,小分子活性层的相分离形貌和小分子太阳能电池的光伏性能对器件制备条件更加敏感;因此,虽然非富勒烯小分子太阳能电池具有非富勒烯受体材料和小分子给体材料的双重优势,但高效率非富勒烯小分子太阳能电池的制备仍
图)。DRTB-T的光学带隙为2.0eV,HOMO能级为-5.51eV。以DRTB-T为给体,IC-C6IDT-IC为受体制备了非富勒烯小分子太阳能电池,并通过溶剂退火的方法对其形貌进行调控,最终获得了9.08%的
年,富士开始谋求彻底转型,最终选择了医疗/生命科学、印刷、影像、光学元器件、高性能材料、文件处理等领域,将自己在传统胶片领域积累的精密化学、对光线与色彩的控制等核心技术“重复使用”,开发出含有自己技术
单晶相当的光学和电学性能,为进一步制备和研究钙钛矿单晶薄膜太阳能电池及其他单晶器件开辟了新的途径。该工作发表在J. Am. Chem. Soc., 2016, 138, 16196。 FR:中国科学院化学研究所
)上。
有机太阳能电池因为其具有原材料来源丰富、成本低廉、质量轻、可通过印刷制备为大面积柔性器件等优点,成为具有重要应用前景的太阳能利用方式,近年来引起广泛关注。在活性层材料中,相比于聚合物材料
,可溶性有机小分子具有纯度高、明确的分子结构和分子量等优点。但是,目前基于有机小分子太阳能电池的效率依然需要进一步提升,尤其是性能更为稳定的反向器件的最高能量转换效率低于9%。
提高光电转换效率的两个
。2015年,多晶硅年产量达7.5万吨,硅片年产能达15吉瓦。目前协鑫已形成从硅材料到光伏装备制造、系统集成、太阳能电站建设运营的光伏一体化产业链。
康得新在柔性材料和光学材料方面拥有领先全球的
技术研发及产业化优势。技术方面,公司与斯坦福、麻省理工学院、英国CPI等知名院所加速柔性材料的研发和科技成果转化;产业化方面,公司依托全球唯一高集中度、全产业链、全系列产品的光学膜产业集群,已形成先进
清(4K/8K)量子点液晶显示、柔性显示等技术国产化突破及规模应用。推动智能传感器、电力电子、印刷电子、半导体照明、惯性导航等领域关键技术研发和产业化,提升新型片式元件、光通信器件、专用电子材料供给
、电子束、离子束及其他能源驱动的主流增材制造工艺装备。加快研制高功率光纤激光器、扫描振镜、动态聚焦镜及高性能电子枪等配套核心器件和嵌入式软件系统,提升软硬件协同创新能力,建立增材制造标准体系。在