并激发出电子-空穴对。这些电子-空穴对在钙钛矿层中分离,形成自由电子和空穴。自由电子通过电子传输层导出,而空穴则通过空穴传输层导出。当器件外加负载时,这些电子和空穴被收集起来,在外部电路中形成电流 从钙钛矿层传输到电极上。这些传输材料的选择对于电池的性能至关重要,因为它们直接影响着电荷的传输效率和稳定性。钙钛矿太阳能电池工艺流程钙钛矿太阳能电池(Perovskite Solar
Cells
新加坡的研究人员已经建造了一种倒置钙钛矿光伏器件,该器件具有p型锑掺杂锡氧化物(ATOx)中间层,据报道,该夹层减少了小面积和大面积钙钛矿电池之间的效率差异。根据他们的研究结果,ATOx可以很容易 了载流子的寿命。此外,由于其优异的导电性,它增强了载流子在ATOx/钙钛矿界面的传输。倒置钙钛矿电池具有称为“p-i-n”的器件结构,其中空穴选择性接触 p 位于本征钙钛矿层 i 的底部,电子传输层 n
增强、更有效的ITO功函数的调节和掩埋界面钝化。因此,采用CbzBT的冠军器件表现出24.04%的出色功率转换效率
(PCE)、84.41% 的高填充因子以及提升的稳定性。这项工作证明了在SAM Alex
Jen团队通过合理的不对称SAM分子设计成功引入了路易斯碱性氧原子和硫原子,获得了两种新型多功能SAM分子:CbzBF和CbzBT。单晶结构和器件界面表征表明,该设计成功实现了SAM分子堆积