26.58%!武大余桢华:通过偶极子分子对SAMs进行单分散调控制备高效钙钛矿太阳能电池!

来源:钙钛矿与OPV薄膜太阳能发布时间:2025-07-28 14:03:49

文章介绍

自组装单层(SAMs)的应用显著推动了钙钛矿太阳能电池(PSC)效率的提高。然而,SAM 分子从胶体溶液到薄膜的转变机制仍不清楚。

基于此,武汉大学余桢华等人系统地研究了 SAM 前驱体溶液以及所得 SAM 和钙钛矿薄膜的结晶质量。在原始的 SAM 溶液中发现了约 460 nm 的纤维状胶束,导致薄膜分布不均匀且覆盖率低。采用强偶极分子与 SAM 建立超分子相互作用,从而能够在溶液 (160 nm) 中形成高度单分散的立方胶束和均匀的 SAM 薄膜。埋地界面的接触由偶极矩和空间位阻之间的平衡决定。因此,基于调控 SAMs 的倒置 PSCs(0.09 cm2)和微型模块(孔径面积为 14.40 cm2)的效率分别达到 26.58%(认证 25.81%)和 22.95%。优化后的器件在 ISOS-D-1 条件下保持了 96.30%以上的初始效率 5,100 h,线性拟合外推到 T90 的 11,259 h,在 ISOS-L-2 条件下的 2,660 h 效率为 98.30%。这项工作凸显了 SAMs 胶束调控在实现高效稳定 PSC 方面的巨大潜力。该论文近期以“Monodisperse Regulation of Self-Assembled Monolayer Via Dipole Molecules for Efficient Perovskite Solar Cells”为题发表在顶级期刊Angewandte Chemie International Edition上。

图文信息

图1. 对ITO/SAM膜和ITO/SAM + CF3-PhACl膜进行了表征。通过DLS表征确定了a)MeO-2PACz和B)MeO-2PACz + CF3-PhACl溶液中的粒径分布,并对c)SAM胶束和d)SAM + CF3-PhACl胶束在室温下干燥的ITO基底上的顶视图SEM照片进行了分析。e)ITO/SAM衬底和f)具有旋涂和退火处理的CF 3-PhACl改性的ITO/SAM衬底的AFM图像。比例尺是600 nm。g)ITO/SAM衬底和h)CF 3-PhACl改性的ITO/SAM衬底的KPFM映射是600 nm。比例尺为600 nm。i)在旋涂和滴涂过程中,在没有和具有CF 3-PhACl改性的ITO基底上SAM胶束从溶液到膜的演变的示意图。

图2. 对照和CF3-PhACl改性的钙钛矿膜的暴露的掩埋界面的表征a)对照和B)CF3-PhACl改性的钙钛矿膜的暴露的掩埋界面的顶视图SEM照片,比例尺,200 nm。c)对照和CF 3-PhAC 1改性的钙钛矿膜的横截面SEM照片,比例尺,d)对照和e)CF 3-PhACl改性的钙钛矿膜的暴露的掩埋界面的AFM图像,比例尺为800 nm。h)ITO/SAM/钙钛矿和i)ITO/SAM + CF 3-PhACl/钙钛矿的能级图。

图3. 烷基胺芳族衍生物配体与钙钛矿和ITO/SAM衬底之间的化学相互作用。a)烷基胺芳族衍生物配体的静电势图像。B)烷基胺芳族衍生物配体的偶极矩。c)对照和不同烷基胺芳族衍生物改性的钙钛矿膜的暴露掩埋界面的Pb 4f的XPS光谱。d)P 2 p的XPS光谱,e)In 3d和f)用于ITO/SAM衬底和CF 3-PhACl改性的ITO/SAM衬底的O 1 s。g)MeO-2PACz和CF 3-PhACl + MeO-2PACz粉末的傅里叶变换红外光谱(FTIR)。

图4. 对照和CF3-PhACl改性的钙钛矿太阳能电池和膜的光学和电子表征。a)沉积在ITO/SAM衬底上的对照和CF3-PhACl改性的钙钛矿膜的PL光谱和B)TRPL曲线。c)对照和CF3-PhACl改性的器件的光强度依赖性VOC曲线。d)对照和e)CF3-PhACl改性的器件的埋底界面的TA谱。f)相应GSB峰的归一化电荷载流子动力学。

图5. 对照和CF3-PhACl改性的钙钛矿太阳能电池的光伏性能和稳定性测试。a)从对照和CF 3-PhAC 1改性的钙钛矿太阳能电池的J-V特性曲线导出的光伏参数的统计。B)在反向扫描下具有0.09 cm 2的活性面积的CF 3-PhAC 1改性的钙钛矿太阳能电池的J-V曲线。插图:CF 3-PhACl改性的钙钛矿太阳能电池的示意图SAM:c)在掩模面积为5.34mm2的反向扫描下的经认证的J-V曲线。d)对照和CF 3-PhACl改性的钙钛矿太阳能电池的FF损失分析。对照和CF 3-PhACl改性的钙钛矿太阳能电池的EQE光谱和积分JSC。f)在反向扫描下,具有14.40cm 2的孔径面积的CF 3-PhACl改性的钙钛矿太阳能微型模块的J-V曲线。g)在55-65 ℃和20- 30%RH的温度下,在连续MPP和用白色发光二极管(LED)照射一个太阳下,封装的器件的ISOS-L-2稳定性方案。

作者证明了一种基于强偶极分子的策略,以调节SAM前体溶液以及所得SAM和钙钛矿薄膜的结晶质量。首先,我们的系统研究表明,原始SAM溶液形成单分散性差的纤维状胶束(约460 nm),导致膜的不均匀和低覆盖率。通过在SAM溶液中引入CF_3-PhACl抑制自聚集,(约160 nm),导致均匀,有序和高覆盖率的SAM膜。CF
3-PhACl分子还与钙钛矿建立强的界面相互作用,以有效地抑制在钙钛矿处形成空隙和破碎的晶粒。钙钛矿的掩埋界面。此外,还系统地研究了不同分子构型的配体对光伏性能的影响,特别强调了偶极矩和空间位阻之间的协同效应。因此,使用CF 3-PhACl制造的倒置PSC和微型模块分别实现了26.58%(认证为25.81%)和22.95%的令人印象深刻的冠军效率。此外,相应的PSC在黑暗和光热老化条件下均表现出优异的稳定性。这项工作表明,偶极分子可以调节SAM的胶束状态和成膜过程,这表明各种SAM系统可以采用一种潜在的通用方法来最大限度地发挥其在PSC中的潜力。

器件制备

器件结构:ITO/SAMs/PVSK/C60/BCP/Cu

1. 洗过的ITO,UV 15min, MeO-2PACz or MeO-2PACz + ligands (0.5, 1.0, 1.5, 2.0, 2.5 mg/mL),5000rpm 20s,110℃退火10min;无水乙醇5000rpm 20s,110℃退火10min,以清洗未锚定分子;

2. 1.5 M Cs0.05MA0.05FA0.90PbBr0.1I2.9,混合18.37 mg CsI, 197.86 mg FAI, 6.76 mg MABr, 8.88 mg MACl, 577.15 mg PbI2, 22.2 mg PbBr2溶于DMF:DMSO=4:1 (v/v)搅拌3小时后+1.1 mg/mL PMACl, 2.1 mg/mL PbCl2, 0.4 mg/mL GuaBCl,1000rpm 5s+3000rpm 30s旋涂,结束前15s 120uL CB反相,110℃退火15min;

3. PDAI2,5000rpm旋涂,110℃退火10min;

4. 蒸镀18 nm C60 ,4.5 nm BCP;蒸镀80 nm Cu。

文章信息

Z. Zhang, Y. Xu, S. Chen, W. Li, S. Wang, C. Peng, S. Du, S. Li, X. Zhao, T. Wang, Z. Yu, Monodisperse Regulation of Self‐Assembled Monolayer Via Dipole Molecules for Efficient Perovskite Solar Cells. Angewandte Chemie International Edition, (2025).

DOI: 10.1002/anie.202512660


索比光伏网 https://news.solarbe.com/202507/28/50004873.html
责任编辑:wanqin
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
西交大梁超AM:29.14%! 全钙钛矿叠层电池! 四硫富瓦烯原位双界面调控实现高效Sn-Pb及全钙钛矿电池!来源:钙钛矿人 发布时间:2025-12-26 10:48:30

西安交通大学梁超等人提出一种原位双界面调控策略:在前驱体溶液中引入平面刚性电子给体四硫富瓦烯(TTF)。TTF与锡-铅钙钛矿前驱体组分间的电子给-受相互作用,辅以TTF原位自组装在钙钛矿体相及上下界面的双重富集,协同调控结晶动力学、均化Sn氧化态、促进载流子在体相与双界面处的抽取与输运,并稳固钙钛矿晶格。

首单落定,该钙钛矿企业再获融资来源:钙钛矿工厂 发布时间:2025-12-24 09:38:42

据企查查获悉,2025年12月19日,中科研和(宁波)科技有限公司再获融资,由镇海产业基金追投,具体融资金额暂未披露。

苏大袁建宇团队AM: 倒置钙钛矿太阳能电池实现 26.11% 的冠军效率!来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:15:02

效率:DCA-1F共SAMs器件表现最优,冠军PCE26.11%,开路电压1.179V,短路电流密度25.89mA/cm,填充因子85.49%;DCA-0F、DCA-2F共SAMs器件PCE分别为25.21%、25.05%,均高于纯MeO-2PACz对照组。稳定性:30-50%湿度环境下储存1000小时,DCA-1F共SAMs器件保持90%初始PCE;1太阳光照下最大功率点跟踪1000小时,仍维持~90%效率,而纯MeO-2PACz器件500小时后效率衰减超50%。DCA分子与MeO-2PACz在溶液状态下自聚集行为的示意图。近期报道的基于共自组装单分子层策略的高效钙钛矿太阳能电池性能汇总。

27.2%!中科院游经碧团队Science:HVCD策略制备高效率钙钛矿太阳能电池来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:11:11

近期,中国科学院半导体研究所游经碧研究员领导的团队发现,基于MACl制备的钙钛矿薄膜存在垂直方向上氯分布不均匀的问题,主要原因是MACl中的氯离子在钙钛矿结晶过程中迅速迁移至上表面引起富集。基于所开发的氯元素均匀分布的钙钛矿薄膜,团队研制出经多家权威机构认证、光电转换效率为27.2%的钙钛矿太阳能电池原型器件。该研究实现了钙钛矿太阳能电池效率与稳定性方面的协同提升,将为其产业化发展提供重要支撑。

南京工业大学曹久朋&秦天石AEL:调节宽带隙钙钛矿结晶并抑制相位分离制备高性能钙硅叠层器件来源:先进光伏 发布时间:2025-12-23 10:58:16

论文概览宽带隙钙钛矿太阳电池是叠层光伏器件的关键组成部分。然而宽带隙钙钛矿中较高的溴离子含量容易导致复杂的结晶过程和薄膜质量的降低。光稳定性测试中PA改性器件在1000小时连续光照老化后保持90.1%初始效率,远超对照组,证明2D钙钛矿通过结晶调控与相分离抑制实现钙硅叠层器件光电转换效率和长期稳定性的协同突破。这项工作为制备高质量宽带隙钙钛矿以及高性能钙硅叠层太阳能电池提供了重要的材料设计以及工艺路线指导。

AFM:双功能电子传输层工程实现能级对齐与界面钝化,打造高效钙钛矿发光二极管来源:知光谷 发布时间:2025-12-23 10:00:54

我们深入研究了BPAH对ETL能级和迁移率的影响,并揭示了其与发光层之间的强相互作用,有效钝化了发光层表面缺陷,促进了电荷传输与辐射复合。研究亮点:一分子双功能:BPAH实现ETL能级调控与界面钝化BPAH分子插入POT2T分子间隙,改善π-π堆叠,提升电子迁移率;其咪唑基团与发光层中未配位Pb配位,增强铅-卤键结合力,有效抑制卤离子迁移与界面缺陷。

黄劲松AEM:理解钙钛矿太阳能电池中基于膦酸分子的空穴传输层来源:知光谷 发布时间:2025-12-23 09:59:38

自组装单分子层已成为钙钛矿太阳能电池中一类重要的界面材料,能够调控能级、提升电荷提取效率,并改善器件效率与稳定性。其中,基于膦酸的自组装单分子层因其可与透明导电氧化物形成共价键,作为超薄、透明且可调控的空穴传输层而备受关注。解决这些挑战是将SAMs推向商业化钙钛矿太阳能产品的关键。

港科大周圆圆、港理工蔡嵩骅等人NC:揭秘钙钛矿电池性能的“隐形杀手”——晶内杂质纳米团簇来源:先进光伏 发布时间:2025-12-22 16:29:28

香港科技大学周圆圆、香港理工大学蔡嵩骅等研究团队,通过低剂量扫描透射电子显微镜首次在铯掺杂混合阳离子钙钛矿薄膜中,发现了一种新型亚稳态晶粒内杂质纳米簇。核心技术亮点首次发现晶粒内隐藏杂质:利用超低剂量扫描透射电镜,首次在原子尺度上直接观测并解析了隐藏在钙钛矿晶粒内部的亚稳态ABX型杂质纳米团簇的晶体结构。

Joule 崔光磊、唐波 喷雾制备钙钛矿 曲面器件23.2% 溶剂工程 强弱络合剂组合实现局部高浓度前驱体策略来源:钙钛矿太阳能电池文献精读集锦 发布时间:2025-12-22 16:15:40

本文提出局部高浓度(LHC)前驱体策略,通过强/弱配体溶剂组合调控溶剂化结构,使钙钛矿在喷雾沉积过程中于液滴内实现均匀受限的体相预成核,成功制备出高质量钙钛矿薄膜,实现了高效、高湿度耐受、可在复杂曲面沉积的钙钛矿光伏器件。

紫色光/紫外光线诱导的卤化物钙钛矿太阳能电池钝化失效来源:钙钛矿材料和器件 发布时间:2025-12-22 13:50:34

胺基末端配体,无论是直接使用还是以二维钙钛矿的形式使用,都是钙钛矿钙化剂中的主要缺陷钝化剂,并且显著推动了各种钙钛矿太阳能电池达到最高效率。然而,即便是这些最先进的钙钛矿太阳能电池,在运行过程中仍会迅速降解,这引发了对钝化耐久性的担忧。总之,研究结果揭示了一种普遍机制,即紫色光/紫外光线会导致胺基端配体的去钝化,而这类配体是钙钛矿太阳能电池的主要缺陷钝化剂。

抑制PEDOT:PSS相分离以提升柔性全钙钛矿叠层太阳能电池效率来源:钙钛矿材料和器件 发布时间:2025-12-22 13:45:15

Empa、四川大学、国立清华大学、FluximAG、苏黎世联邦理工学院和斯洛伐克科学院的研究人员证明,超薄PEDOT:PSS中的垂直相分离会产生界面偶极,限制柔性钙钛矿叠层电池性能,而将曲拉通加入PEDOT:PSS可抑制这些偶极子并提升器件效率。柔性全钙钛矿叠层太阳能电池和微型模块。本研究不仅揭示了PEDOT:PSS中界面偶极子作为钙钛矿叠层中的隐藏损耗机制,还提供了一种可扩展的克服方法。