最新Science!中科院长春应化所团队钙钛矿-晶硅叠层电池效率突破34.2%

来源:钙钛矿与OPV薄膜太阳能发布时间:2025-07-25 16:11:12

近日,从中国科学院长春应用化学研究所传来消息,该所秦川江、王利祥研究团队在“新型有机自组装分子设计及其在钙钛矿太阳能电池中的应用研究”中取得重大突破。研究团队首次开发出一种高效、稳定且分散性优异的双自由基自组装分子材料,显著提升钙钛矿太阳能电池的光电转换效率、运行稳定性和大面积加工均匀性。相关成果日前发表在国际期刊《Science》上。

钙钛矿太阳能电池因其高效率、低成本以及可溶液加工等优势,被广泛认为是下一代光伏技术的核心方向。但其在产业化进程中面临着关键瓶颈:一方面,传统空穴传输层的制备依赖于高成本材料和复杂的成膜工艺,同时存在热稳定性和界面接触稳定性较差的问题;另一方面,现有材料普遍表现出载流子传输能力不足、组装均匀性差等问题,在实际工况条件下易发生分解,从而导致器件效率快速衰减。此外,自组装分子的均匀成膜技术尚未成熟,严重制约了大面积组件性能的进一步提升。

针对上述瓶颈,研究团队开发出新型双自由基型自组装分子材料,解决了钙钛矿太阳能电池空穴传输层性能不足难题。“新材料通过分子自组装技术,能形成高度均匀的薄膜结构,从根本上避免了传统材料无序堆叠导致的密度损失。”秦川江表示,依靠新材料制造的钙钛矿太阳能电池效率达到世界先进水平,小面积器件实现26.3%的光电转换效率,微组件效率达到23.6%,钙钛矿-晶硅叠层电池效率突破34.2%。

“该技术已具备量产条件。”秦川江表示,“更为重要的是,我们实验室所用的关键设备均为国产,在核心材料领域实现了自主可控。目前该技术已吸引苏州鸿正智能科技等上下游4家配套企业在长春建厂投产。”

据悉,该技术已获美国国家可再生能源实验室效率认证并申请1项国家专利。秦川江表示,下一步团队将积极尝试新材料的产业化应用,不断提升技术水平。


索比光伏网 https://news.solarbe.com/202507/25/50004751.html
责任编辑:wanqin
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
Sang Il Seok最新AEL:协同偶极工程释放宽禁带钙钛矿中92.8% S-Q 电压极限,用于叠层光伏来源:知光谷 发布时间:2025-12-24 09:20:57

最终,最优WBGPSC实现了VOC=1.29V、JSC=20.0mAcm、FF=82.8%和PCE=21.27%,对应Shockley–Queisser电压极限的92.8%。这些结果表明,协同缺陷钝化与能级调控对于释放WBG钙钛矿的完整电压潜力均至关重要。研究亮点:突破性电压表现:通过协同表面处理,宽禁带钙钛矿电池开路电压达1.29V,实现Shockley–Queisser理论极限的92.8%,为同类器件中最高之一。高效叠层集成:经处理的宽禁带钙钛矿作为顶电池,与硅底电池组成叠层器件,实现26.8%的光电转换效率与1.91V的高开路电压,展示其在实际叠层光伏中的应用潜力。

中山大学毕冬勤AM:邻苯二酚锚定基团助力锡-铅钙钛矿全钙钛矿叠层效率突破28.3%来源:知光谷 发布时间:2025-12-24 09:19:15

本研究中山大学毕冬勤等人首次设计并引入一种新型SAM分子——9--9H-咔唑,其具有共轭邻苯二酚锚定基团,应用于锡-铅钙钛矿电池中。此外,DOPhCz加速空穴提取并减少器件工作过程中的化学扰动。应用于全钙钛矿叠层电池时,效率达到28.30%。高效稳定全钙钛矿叠层电池:基于DOPhCz的Sn-Pb子电池效率达24.17%,全钙钛矿叠层效率达28.30%;在最大功率点连续运行500小时后仍保持80%初始效率,界面与运行稳定性显著优于2PACz体系。

钧达股份:正积极推进钙钛矿及钙钛矿叠层电池的商业化应用来源:证券时报e公司 发布时间:2025-12-23 16:36:15

钧达股份12月22日在机构线上电话会议表示,公司深耕光伏电池技术研发,在下一代钙钛矿技术领域布局深远,已与仁烁、中科院、苏州大学等单位开展研究,已实现关键突破:钙钛矿叠层电池实验室效率达32.08%,居于行业领先水平;2025年11月完成首片产业化N型+钙钛矿叠层电池下线,攻克底电池结构优化、高效介质钝化膜沉积等核心技术,具备独立开展叠层工艺研发与小规模生产的能力,正积极推进钙钛矿及钙钛矿叠层电池的商业化应用。

苏大袁建宇团队AM: 倒置钙钛矿太阳能电池实现 26.11% 的冠军效率!来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:15:02

效率:DCA-1F共SAMs器件表现最优,冠军PCE26.11%,开路电压1.179V,短路电流密度25.89mA/cm,填充因子85.49%;DCA-0F、DCA-2F共SAMs器件PCE分别为25.21%、25.05%,均高于纯MeO-2PACz对照组。稳定性:30-50%湿度环境下储存1000小时,DCA-1F共SAMs器件保持90%初始PCE;1太阳光照下最大功率点跟踪1000小时,仍维持~90%效率,而纯MeO-2PACz器件500小时后效率衰减超50%。DCA分子与MeO-2PACz在溶液状态下自聚集行为的示意图。近期报道的基于共自组装单分子层策略的高效钙钛矿太阳能电池性能汇总。

目前最高值!AFM:双重钝化策略使钙钛矿电池太阳能-氢能转换效率达6.5%来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:13:06

FASCN促进钙钛矿晶粒长大,PDAI减少表面缺陷,共同抑制非辐射复合并提升电荷提取效率。进一步通过三元富勒烯混合物优化电子传输层,改善能级对齐并降低界面能量损失,使小面积器件的开路电压从1.41V提升至1.60V,能量转换效率达9.4%。该系统太阳能-氢能转换效率达6.5%,是目前报道的单吸收体PV-EC系统中最高值。单吸收体水分解效率创纪录:将优化后的1.0cm器件集成于PV-EC系统,实现6.5%的太阳能-氢能转换效率,为目前单吸收体光解水系统最高值。

27.2%!中科院游经碧团队Science:HVCD策略制备高效率钙钛矿太阳能电池来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:11:11

近期,中国科学院半导体研究所游经碧研究员领导的团队发现,基于MACl制备的钙钛矿薄膜存在垂直方向上氯分布不均匀的问题,主要原因是MACl中的氯离子在钙钛矿结晶过程中迅速迁移至上表面引起富集。基于所开发的氯元素均匀分布的钙钛矿薄膜,团队研制出经多家权威机构认证、光电转换效率为27.2%的钙钛矿太阳能电池原型器件。该研究实现了钙钛矿太阳能电池效率与稳定性方面的协同提升,将为其产业化发展提供重要支撑。

世界纪录!京东方钙钛矿小电池稳态27.37%!2.88㎡全面积效率20.11%!来源: 发布时间:2025-12-23 14:08:42

在钙钛矿光伏领域,京东方依托自身在玻璃基薄膜加工工艺及封装技术方面的独特优势,快速实现钙钛矿核心能力储备。经国际权威机构福建计量院认证,京东方小电池钙钛矿器件稳态效率最高达27.37%,刷新世界纪录;经TV南德权威认证,中试线2.88㎡刚性钙钛矿组件功率达579W,全面积效率20.11%,单结大面积器件效率行业第一;柔性效率也均创世界纪录,实验线柔性效率21.39%,中试线柔性效率16.6%,功率433w,是业内面积最大、功率最大的柔性组件。

579W !京东方2.88㎡钙钛矿刚性组件全面积TÜV南德认证效率达20.11%来源:钙钛矿工厂 发布时间:2025-12-23 10:12:23

12月22日,BOE(京东方)“焕新2026”年终媒体智享会收官站在武汉圆满落地。作为贯穿上海、成都、深圳三站后的压轴活动,本次会议以“焕新·向远而行”为核心主题,聚焦显示产业的可持续发展路径,全面展示BOE(京东方)在绿色技术、低碳运营与社会责任方面的丰硕实践成果,以及在钙钛矿光伏、智慧能源等领域的关键布局,为行业迈向可持续发展提供战略指引。

AFM:双重奏效!FAPbBr₃钙钛矿电池开路电压跃升至1.60V,光解水效率突破6.5%来源:知光谷 发布时间:2025-12-23 10:02:56

宽带隙甲脒铅溴钙钛矿太阳能电池在单结吸收体实现无辅助光驱动水分解方面具有潜力。FASCN促进钙钛矿晶粒长大,PDAI减少表面缺陷,共同抑制非辐射复合并提升电荷提取效率。进一步通过三元富勒烯混合物优化电子传输层,改善能级对齐并降低界面能量损失,使小面积器件的开路电压从1.41V提升至1.60V,能量转换效率达9.4%。研究亮点:双重钝化协同增效:体相添加FASCN促进晶粒生长,表面处理PDAI钝化界面缺陷,显著抑制非辐射复合,开路电压提升至1.53V。

溴功能化Bz-PhpPABrCz+Bz-PhpPACz二元混合SAM在纹理化钙钛矿/硅叠层太阳电池上实现31.4%效率来源:钙钛矿-晶硅叠层太阳电池TSCs 发布时间:2025-12-22 17:25:37

Huang等人关键发现:溴杂质意外提升性能意外发现:商用SAM材料4PADCB中意外含有溴代杂质,这些杂质反而提升了叠层电池性能。低滞后性:Mix和C-4PADCB电池滞后明显小于纯Bz-PhpPACz(图5B)。

青岛科技大学周忠敏&中科院青岛生物能源与过程研究所逄淑平最新JACS:基于软硬酸碱理论设计硫醇交联剂,钙钛矿/SAM界面强韧化来源:先进光伏 发布时间:2025-12-22 16:34:53

论文概览针对倒置结构钙钛矿太阳能电池中钙钛矿/自组装单分子层异质界面机械稳定性差、制约器件长期可靠性的关键瓶颈,青岛科技大学与中国科学院青岛生物能源与过程研究所联合团队创新性地基于软硬酸碱理论,设计并筛选出一系列硫醇(-SH)基交联剂,用于强化界面化学键合并提升稳定性。