当前位置:首页 > 光伏资讯 > 光伏技术 > 正文

打破25.1%转化效率纪录的钙钛矿太阳能电池

来源:钙钛矿材料和器件发布时间:2024-01-16 10:11:49

研究人员利用分子组合来解决各种问题,从而提高了电池效率。美国西北大学(Northwestern University)的研究人员通过一项新开发再次提升了钙钛矿太阳能电池的标准,帮助这项新兴技术创下了新的效率纪录。最近发表在《科学》(Science)杂志上的这一研究成果描述了一种双分子解决方案,以克服阳光转化为能量过程中的效率损失。

美国西北大学(Northwestern University)在包钙钛矿太阳能电池方面的最新研究创造了 25.1% 的新效率纪录,该研究采用了一种新型双分子方法来减少电子复合。这一研究成果标志着使钙钛矿太阳能电池成为比传统硅基电池更高效、更稳定的替代品迈出了重要一步。

通过首先加入一种分子来解决所谓的表面重组(电子被缺陷困住时会丢失),然后再加入另一种分子来破坏层间界面的重组,该团队的效率达到了美国国家可再生能源实验室(NREL)认证的 25.1%,而之前的效率仅为 24.09%。

西北大学教授Ted Sargent说:"钙钛矿太阳能技术发展迅速,研发重点正从体吸收体转向界面。这是进一步提高效率和稳定性的关键,使我们更接近这条通往更高效太阳能电池的充满希望的道路"。

Ted Sargent是 Paula M. Trienens 可持续发展与能源研究所(前身为 ISEN)的联合执行主任,也是材料化学和能源系统方面的多学科研究人员,在温伯格艺术与科学学院(Weinberg College of Arts and Sciences)化学系和麦考密克工程学院电气与计算机工程系任职。

传统的太阳能电池由高纯度硅晶片制成,生产过程耗能巨大,而且只能吸收固定范围的太阳光。钙钛矿材料的厚度和成分可以调整,以"调节"其吸收的光波长,这使其成为一种有利的、潜在的低成本、高效率的新兴叠层太阳能技术。

一直以来,由于其相对不稳定性,钙钛矿太阳能电池在提高效率方面一直面临挑战。在过去的几年里,Ted Sargent实验室和其他实验室取得的进展已经使钙钛矿太阳能电池的效率达到了与硅相同的程度。

电子保留方面的进展

在目前的研究中,研究小组不是试图帮助电池吸收更多的阳光,而是把重点放在维持和保留产生的电子以提高效率的问题上。当钙钛矿层与电池的电子传输层接触时,电子会从一个层移动到另一个层。但电子又会向外移动,并与存在于钙钛矿层上的空穴进行填充或"重组"。

第一作者、Ted Sargent实验室博士后Cheng Liu说:"界面上的重组非常复杂,Ted Sargent实验室由查尔斯-莫里森(Charles E. and Emma H. Morrison)化学教授梅尔库里-卡纳齐迪斯(Mercouri Kanatzidis)共同指导。使用一种分子来解决复杂的重组和保留电子是非常困难的,因此我们考虑了可以使用什么样的分子组合来更全面地解决这个问题"。

Ted Sargent团队过去的研究发现,有证据表明一种分子 PDAI2 可以很好地解决界面重组问题。接下来,他们需要找到一种能够修复表面缺陷并防止电子与之重组的分子。

双分子方法和未来工作

通过找到让 PDAI2 与辅助分子协同工作的机制,研究小组锁定了硫,硫可以取代碳基(通常在防止电子移动方面表现不佳),覆盖缺失的原子并抑制重组。

同一研究小组最近在《Nature》杂志上发表的一篇论文,为过氧化物层下的衬底开发了一种涂层,以帮助电池在更高温度下长时间工作。Liu说,这种解决方案可以与《科学》论文中的发现协同工作。

研究小组希望他们的发现能鼓励更多的科学界人士继续推进这项工作,同时他们也将开展后续工作。

"我们必须采用更灵活的策略来解决复杂的界面问题,"Cheng 说。"我们不能像以前那样只使用一种分子。我们用两种分子来解决两种重组,但我们确信在界面上还有更多种类的缺陷相关重组。我们需要尝试使用更多的分子来组合在一起,确保所有分子在不破坏彼此功能的情况下协同工作。


责任编辑:周末

特别声明:
凡本网注明来源: "索比光伏网或索比咨询"的所有作品,均为本网站www.solarbe.com合法拥有版权或有权使用的作品,未经本网授权不得转载、摘编或利用其它方式使用上述作品。

经本网授权使用作品的,应在授权范围内使用,并注明来源: "索比光伏网或索比咨询"。违反上述声明者,本网将追究其相关法律责任。
推荐新闻
26.81%!浙江白马湖实验室钙钛矿太阳能电池效率实现新突破

26.81%!浙江白马湖实验室钙钛矿太阳能电池效率实现新突破

近日,白马湖实验室与苏州大学联合团队研发的小面积单结钙钛矿太阳能电池,经国家光伏产业计量测试中心平台权威认证,稳态光电转换效率达到26.81%,刷新世界纪录。

钙钛矿太阳能电池光伏产业
2025-02-14
江西首条落地!GW级钙钛矿/晶硅叠层组件制造项目签约赣州

江西首条落地!GW级钙钛矿/晶硅叠层组件制造项目签约赣州

近日,江西省赣州市石城县2025年“三请三回”“双招双引”推介会暨高层次人才代表迎新春座谈会召开,石城县委书记张小川出席相关活动。会上举行了集中签约仪式,杭州众能光电钙钛矿晶硅叠层组件制造项目等7个项目现场签约,签约资金达28.5亿元。

众能光电钙钛矿晶硅叠层组件
2025-02-14
苏州大学李耀文最新AFM:通过溶剂工程控制狭缝模头涂层过程中CsFA基钙钛矿的核生长和相变以实现高性能太阳能电池和模组

苏州大学李耀文最新AFM:通过溶剂工程控制狭缝模头涂层过程中CsFA基钙钛矿的核生长和相变以实现高性能太阳能电池和模组

狭缝涂布已成为大规模生产钙钛矿太阳能电池 (pero-SC) 和太阳能模块 (pero-SM) 的必不可少的方法。然而,由于钙钛矿在成膜过程中结晶动力学不可控且相变复杂,狭缝模头涂层生产的钙钛矿太阳能电池和钙钛矿太阳能模组的能量转换效率仍然远远落后于旋涂器件。鉴于此,2025年2月10日苏州大学Guiying Xu&Yunxiu Shen&李耀文于AFM刊发通过溶剂工程控制狭缝模头涂层过程中CsFA基钙钛矿的核生长和相变以实现高性能太阳能电池和模组的研究成果,通过添加挥发性2-甲氧基乙醇(2-ME)并将其

钙钛矿
2025-02-12
武汉大学肖旭东&宫俊波最新AM:29.03%!反应性等离子体沉积ITO作为反式钙钛矿太阳能电池的有效缓冲层

武汉大学肖旭东&宫俊波最新AM:29.03%!反应性等离子体沉积ITO作为反式钙钛矿太阳能电池的有效缓冲层

2025年2月10日武汉大学肖旭东&宫俊波于AM刊发反应性等离子体沉积ITO作为反式钙钛矿太阳能电池的有效缓冲层的研究成果,本研究展示了反应性等离子体沉积(RPD)在制造氧化铟锡(ITO)方面作为反式宽带隙钙钛矿太阳能电池中有效缓冲层的潜力。该方法使宽带隙钙钛矿太阳能电池的认证效率达到21.33%,显示出卓越的热稳定性和运行稳定性。优化后的器件在带隙为1.67 eV的情况下实现了令人印象深刻的 1.252 V开路电压,从而实现了0.418 V的极低开压损失,这归因于电子提取的改善、界面缺陷的减少和表面复合

钙钛矿太阳能电池
2025-02-12
26.81%!浙江白马湖实验室钙钛矿太阳能电池效率实现新突破

26.81%!浙江白马湖实验室钙钛矿太阳能电池效率实现新突破

近日,白马湖实验室与苏州大学联合团队研发的小面积单结钙钛矿太阳能电池,经国家光伏产业计量测试中心平台权威认证,稳态光电转换效率达到26.81%,刷新世界纪录。

钙钛矿太阳能电池光伏产业
2025-02-14
武汉大学肖旭东&宫俊波最新AM:29.03%!反应性等离子体沉积ITO作为反式钙钛矿太阳能电池的有效缓冲层

武汉大学肖旭东&宫俊波最新AM:29.03%!反应性等离子体沉积ITO作为反式钙钛矿太阳能电池的有效缓冲层

2025年2月10日武汉大学肖旭东&宫俊波于AM刊发反应性等离子体沉积ITO作为反式钙钛矿太阳能电池的有效缓冲层的研究成果,本研究展示了反应性等离子体沉积(RPD)在制造氧化铟锡(ITO)方面作为反式宽带隙钙钛矿太阳能电池中有效缓冲层的潜力。该方法使宽带隙钙钛矿太阳能电池的认证效率达到21.33%,显示出卓越的热稳定性和运行稳定性。优化后的器件在带隙为1.67 eV的情况下实现了令人印象深刻的 1.252 V开路电压,从而实现了0.418 V的极低开压损失,这归因于电子提取的改善、界面缺陷的减少和表面复合

钙钛矿太阳能电池
2025-02-12
26.9%认证效率!上交大陈俊超团队最新EES

26.9%认证效率!上交大陈俊超团队最新EES

自组装分子(SAMs)作为光管理纹理基底上的空穴传输层(HTLs),在高效倒置钙钛矿太阳能电池(PSCs)中具有巨大的商业潜力。然而,SAMs在粗糙基底上的不均匀分布和无序堆积加剧了界面能量损失,阻碍了PSCs效率和稳定性的进一步提升。

钙钛矿太阳能电池
2025-02-12
苏州大学彭军课题组钙钛矿太阳能电池稳态效率突破26.8%

苏州大学彭军课题组钙钛矿太阳能电池稳态效率突破26.8%

2024年12月,苏州大学功能纳米与软物质研究院彭军教授课题组及其合作者在单结钙钛矿太阳能电池领域取得重大突破,经国家光伏产业计量测试中心权威认证,其研发的电池稳态光电转换效率达到了26.81%,刷新世界纪录。

钙钛矿太阳能电池
2025-02-08
返回索比光伏网首页 回到打破25.1%转化效率纪录的钙钛矿太阳能电池上方
关闭
关闭