超5亿美元!有机太阳电池的发展潜力可观,为光伏企业带来新机遇

来源:PV-Tech发布时间:2022-06-16 15:17:34

更少的空间、不断缩小的屋顶面积和不断增长的能耗正在推动太阳能领域的迭代创新,有机太阳电池(OSCs)就是其中之一。

这是薄膜太阳电池的一种先进创新形式。在有机太阳电池中,塑料板被用来代替后座,光伏材料与其他可弯曲基材被一起印在上面。这就是它们比硅太阳电池要轻得多的原因。

有机太阳电池的可用性、灵活性和重量轻受到广泛关注。然而,这种电池的一个主要缺点是效率较低,过去这些年几乎没有超过10%。

伴随着规模化生产,再加上这些有机太阳电池的多功能性提供了新的开发途径,这种情况在发生改变。如非富勒烯受体(NFA)的快速发展,小面积单结OSC的功率转换效率(PCE)已超过18%(器件面积约0.1cm2 。

如此,这样一种可以大规模生产的、薄而灵活的硅基太阳电池替代品有望使可再生能源在更多领域得以应用,如为室内智能设备供电等。除了在室内的效率外,有机太阳能电池更易与室内家具融合。它们也不含铅和其他对环境有害的化合物。

传统的太阳电池是由硅制成的,不能在室内使用。但是,这些有机电池的发电效率在室内使用时不会下降。

有机太阳电池,从边缘到前沿

2010年,美国佐治亚州理工学院的研究机构在提高光电设备性能方面展开了不同一般的研究。研究表明,使用压电材料可以提升光电设备的性能,即像太阳电池一样工作。

在这种背景下,日本立命馆大学的一个研究小组发明了一种薄膜柔性压电-光伏装置。这些太阳能光伏电池可以将给予室内光线的LED和紧凑型荧光灯的光线转换为电能。

这一装置薄如纸,长度仅为10毫米,通过ZnMgO薄层分层形成。ZnMgo和硒(Se)是用于这些薄膜的主要原材料,这也是这些PET塑料薄膜具有灵活性的原因。这种薄膜的主要优点是,它可以很容易的吸收室内环境光线。由于薄而灵活,这些设备所需的空间较小,可以以各种形式使用。

组件大规模生产指日可待

一家德国初创公司Heliatek计划最快在今年开始大规模生产有机太阳光伏电池。日本公司理光计划从2023财年开始小规模生产这类电池。

业内人士称,每平方米的有机电池重量不足2kg,明年将降至不足1kg。

有机太阳光伏电池先驱、瑞典的Epishine公司预计将在今年12月向市场推出公司的组件。它们的转换效率为13%,寿命约为10年。这家初创公司表示,这些组件可用于温度和湿度控制、读卡器和火灾警报器。

日本电子企业预计会在下一个财年产生100平方米的有机太阳电池,这足以为约50000个微小的智能器具供电。

法国企业Dracula Technologies正在研究不依赖昂贵的稀土金属的薄膜状有机太阳电池。至2024年,公司预计将开始大规模生产。Dracula Technologies在2020年从个人投资者那里筹集了240万欧元启动资金。电池的外部转换效率可以达到13%,寿命可以达到10年。

在中国,今年5月,《先进功能材料》(Advanced Functional Materials)以“Fluid Mechanics Inspired Sequential Blade-Coating for High-Performance Large-Area Organic Solar Modules”为题,在线报道了苏州大学李永舫院士团队的李耀文教授在活性层流体力学调控助力高效大面积有机太阳能组件方面取得的重要进展(Adv. Funct. Mater., 2022, DOI: 10.1002/adfm.202202011)。

超过5亿美元!有机太阳电池的发展潜力可观,为光伏企业带来新机遇
 

(a)基于RS-LBL策略的大面积OSC组件示意图;(b)相应OSC组件的J-V曲线;(c)在10×10 cm2的基板上,刮涂制备的有效面积为36 cm2的组件照片;(d)已报道有效面积超过30 cm

据介绍,本体异质结(BHJ)有机太阳电池因可溶液加工、质轻和本征柔性等优点引起了科研人员的广泛关注及研究后,取得了快速发展,目前光电转换效率已突破19%。

继BIPV之后,这一太阳能行业的突破有可能成为这个时代的一场革命,消费者现在有了更多的太阳能替代品,而不仅仅是标准太阳能组件。

从2021年到2035年,全球有机太阳电池市场预计将增长五倍,超过5亿美元。有机太阳电池的发展潜力可观,这给企业带来了很大希望。


超过5亿美元!有机太阳电池的发展潜力可观,为光伏企业带来新机遇

索比光伏网 https://news.solarbe.com/202206/16/356138.html

责任编辑:zhangjiayu
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
科学家研发自修复封装材料,阻铅超99%!为钙钛矿光伏技术的可靠性提供了关键解决方案来源:钙钛矿材料和器件 发布时间:2025-12-05 14:36:42

钙钛矿太阳能电池凭借其高光电转换效率与低制造成本,正成为下一代光伏技术商业化进程中的领跑者。因此,亟需开发一种能够快速响应损伤、具备高效自修复能力与主动铅捕获功能的新型封装材料,这已成为推动钙钛矿光伏技术实现安全、可持续商业化所必须突破的关键瓶颈。

高度透明的钙钛矿太阳能电池效率为18.22%来源:钙钛矿材料和器件 发布时间:2025-12-05 14:31:49

印度的一个研究团队研究了基于室温工艺制备的非晶铟锌高导电透明电极在钙钛矿太阳能电池中的应用,这些器件可用于叠层和建筑集成光伏应用。其中包括在钙钛矿太阳能电池的后部透明电极中使用a-IZO。事实上,原型机的效率超过了基于c-ITO器件的15.84%功率转换效率。

AEM:冷升华‘准固态’添加剂助力有机太阳能电池效率超20%、寿命近500小时来源:知光谷 发布时间:2025-12-03 09:25:55

在Y系列有机太阳能电池中,调控活性层在干燥过程中的形貌对于同时实现高效率与高耐久性至关重要。这些结果确立了物理状态编程的ISR添加剂作为一条通用路径,可协同优化OSCs的效率与稳定性,并为可扩展、无残留的形貌控制提供了机理指导。同时大幅提升效率与稳定性:mDF通过优化结晶动力学、收紧π-π堆积、增大相干长度并编程有利的垂直相分离,将PM6:L8-BO器件效率提升至19.28%,并将高温光照下的运行稳定性大幅延长至477小时。

AEM:用于非富勒烯有机太阳能电池的两亲性聚合物共网络:调控分子堆叠实现高效下转换来源:知光谷 发布时间:2025-11-25 14:41:54

两亲性聚合物共网络由纳米尺度相分离的亲水和疏水域组成,近年来在被动光子学应用中引起关注。掠入射广角X射线散射表明,发光团的分子平面性和二面角通过范德华相互作用影响BHJ的堆叠,进而影响电荷传输。研究亮点:创新性引入APCNs作为多功能支架:利用其纳米相分离结构,成功将亲水性下转换发光团与疏水性PM6:Y6体异质结在空间上隔离,解决了材料不相容和能级不匹配问题。

前沿光伏技术之中间带太阳电池:让低能光子“无处可逃”的超能武器来源:网络 发布时间:2025-11-24 11:09:28

以晶体硅为代表的第一代太阳电池,其效率已接近理论极限,提效空间有限;第二代太阳电池(CdTe、CIGS、非晶/微晶硅等)虽然生产成本较低,但效率偏低,且其中部分材料存在资源稀缺或环境毒性等问题,难以支撑大规模可持续应用。在此背景下,第三代太阳电池应运而生,包括有机光伏、钙钛矿电池、多结叠层、中间带、热载流子、光子/激子倍增以及热光伏等。这些新技术的共同目标是在不增加复杂封装与阳光跟踪系统的前提下,不断推动单片电池转换效率的提升。

浙江大学陈红征团队AM:兼容空气的溶剂浴热退火实现高效有机太阳能电池与大面积组件来源:先进光伏 发布时间:2025-11-14 10:54:17

针对这一挑战,浙江大学陈红征团队提出了一种新型后处理策略——溶剂浴热退火,实现了大面积OSC活性层在空气环境下的高效热处理。结论展望该研究开发的STA技术成功解决了传统热退火在空气中导致的薄膜降解与性能下降问题,通过PFD溶剂浴实现均匀加热与有效保护。该空气兼容、可扩展的退火策略为有机太阳能电池的大面积制造与商业化应用提供了切实可行的技术路径。

中山大学莱恩功能材料研究所Nature Sustainability:用内置超分子复合物降低钙钛矿太阳能电池的铅毒性来源:矿物薄膜太阳能电池 发布时间:2025-11-11 11:53:07

该论文通过在钙钛矿太阳能电池(PSCs)中嵌入由2 - 羟丙基-β- 环糊精(HPβCD)和1,2,3,4 - 丁烷四羧酸(BTCA)组成的自交联超分子复合物,同时解决了铅泄漏、铅毒性及器件稳定性问题;改性后PSCs 冠军功率转换效率(PCE)达22.14%,严重破损器件经522 小时动态水冲刷仍保持97% 初始效率且铅泄漏量< 14 ppb(符合美国EPA 标准),铅毒性降至与无铅PSCs 相当水平,还实现了铅的闭环回收,为PSCs 商业化提供可持续路径。

AEL:揭秘无机钙钛矿太阳能电池的离子动态:温度与有机层的影响来源:知光谷 发布时间:2025-11-10 13:45:21

金属卤化物钙钛矿虽具有优异光电性能,但离子迁移导致的稳定性问题亟待解决。研究指出,仅当离子响应完全激活时,两种方法才能可靠估计移动离子密度。BACE测量显示离子迁移率与浓度随温度升高而增加,并可通过离子飞行时间计算Br激活能;Mott-Schottky测试则呈现高频电子缺陷平台与低频离子缺陷平台。该研究成果为无机钙钛矿太阳能电池的稳定性优化提供了关键测量方法与理论依据,对推动钙钛矿光伏商业化进程具有重要意义。

山东大学殷航教授、郝晓涛教授、张茂杰教授、北航孙艳明教授最新NC:关键长度筛选使厚膜有机太阳能电池的效率达到19%来源:印刷钙钛矿光电器件 发布时间:2025-11-10 08:31:26

鉴于此,山东大学殷航教授、郝晓涛教授、张茂杰教授和北航孙艳明教授等人近期在期刊《NatureCommunications》发文,题为“Criticallengthscreeningenables19%efficiencyinthick-filmorganicsolarcells”。研究提出了一种实验方案,将“临界长度”确定为决定厚膜有机太阳能电池性能的关键因素。创新点:1.提出“临界长度”作为厚膜有机太阳能电池受体的筛选指标,综合考量零场迁移率、跳跃频率与场依赖性,突破传统单一迁移率筛选的局限性。

东南大学姚惠峰Adv. Mater.:多功能二维共轭BDT聚合物中间层实现效率超过20%的有机太阳能电池来源:先进光伏 发布时间:2025-11-03 10:09:12

东南大学姚惠峰团队创新设计具有选择性溶解性的二维共轭聚合物PBDB-tvt,通过长共轭侧链修饰BDT单元,成功将其用作多功能中间层,构建顺序沉积混合器件,最终实现20.3%的效率突破。结论展望本研究通过合理分子设计,开发出具有选择性溶解特性的二维共轭聚合物PBDB-tvt,作为多功能中间层应用于顺序沉积混合器件,有效调控了活性层垂直相分布,增强了短波长光吸收,并显著提升了电荷传输与提取效率,最终实现了20.3%的高效率与优异稳定性。

东南大学姚惠峰AM:多功能2D共轭BDT聚合物夹层可实现20%以上的有机太阳能电池来源:知光谷 发布时间:2025-11-03 09:11:43

本文东南大学姚惠峰等人通过在苯并二噻吩单元上引入长共轭侧链——氯化烯丙硫基-噻吩-乙烯-噻吩,设计了一种二维共轭聚合物给体PBDB-tvt。最终,最优器件实现了20.3%的最高PCE。多功能中间层协同增效:PBDB-tvt中间层不仅优化了垂直相分布,还增强了短波长光吸收,提升电荷传输与提取效率,抑制复合。