前沿科技:细菌有望通过人工光合作用生产太阳能

来源:生物帮发布时间:2020-09-07 14:33:07

美国研究人员强迫将金纳米颗粒喂给非光合细菌。贵金属的位的发行给微生物以打开光进入太阳能燃料的能力,报告一个Nanowerk文章。

热乙酸穆尔氏菌通常不能进行光合作用。从研究美国加州大学伯克利分校(加州大学伯克利分校)加入硫化镉纳米粒子对细菌的细胞膜的外部。

硫化镉可以吸收光。当嫁接到细菌上时,它们充当了能够进行人工光合作用的半导体。热乙型支原体-CdS能够将阳光和二氧化碳转化为可用能量。

加州大学伯克利分校的同一个团队进一步研究了他们。他们想提高细菌的人工光合作用的效率。

在美国国立卫生研究院(National Institutes of Health)资助的一项新研究中,研究员Peidong Yang拍摄了可以吸收光的金纳米团簇。他将纳米金属插入了基线非光合作用的热乙酸穆尔氏菌。

杨在科学期刊《自然纳米技术》上发表了他的发现。他报告说,与早期使用硫化镉的小组相比,新一批的人工光合细菌可以产生更多的化学产品。(相关:正在进行新的科学努力,以利用太阳能电池板的能量将水转化为燃料。)

纳米粒子可实现细菌的光合作用

在较早的批次中使用硫化镉作为吸光半导体的问题是其对细菌的毒性。因此,纳米颗粒只能锚定在热乙酸分支杆菌细胞膜的外表面。

当被阳光照射时,每个纳米粒子都会释放出一个电子。电子穿过细菌并激活各种酶。产生的反应导致称为二氧化碳还原的过程。

二氧化碳的还原将气体转化成乙酸盐。该化学物质是太阳能中的重要成分。

这种细胞外模型的量子效率低。如果将纳米颗粒安装在细胞外部,则它们产生的所有电子都不会到达与二氧化碳还原有关的化学物质。这些电子最终引发不同的反应,并从能量生产的角度浪费掉了。

Yang和他的研究小组正在寻找一种可以放置在热乙酸穆尔氏菌细菌内部的不同半导体材料。内部模型将减少浪费的电子数量。

为此,他们通过将22个单独的原子融合在一起来创建金纳米团簇。然后,他们在新一批的热乙酸莫拉氏菌中注入了大量这些纳米团簇。他们很高兴地报告纳米团簇不会损害细菌。


索比光伏网 https://news.solarbe.com/202009/07/330137.html
责任编辑:niupengzhen
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
中科院半导体所游经碧、蒋琦团队《Nat. Commun.》:宽带隙钙钛矿相分布均匀化策略实现高性能钙钛矿/硅叠层太阳能电池来源:先进光伏 发布时间:2025-12-15 22:18:05

钙钛矿/ 硅叠层太阳能电池是突破单结电池效率极限的核心技术路径,其中宽带隙(WBG)钙钛矿顶电池的性能直接决定叠层器件的最终表现。为匹配硅底电池的电流输出,宽带隙钙钛矿需引入高溴含量和Rb 合金化,但这会导致结晶动力学过快、相分离严重,形成δ-RbPbI₃等非钙钛矿副相,大幅降低器件效率与稳定性。

中科院化学所孟磊团队:氧化还原改进型混合 SAM 助力倒置钙钛矿电池来源:先进光伏 发布时间:2025-12-15 22:13:19

钙钛矿太阳能电池凭借高功率转换效率(PCE)和低成本制备优势,成为光伏领域的研究热点。其中,采用镍氧化物(NiOₓ)/ 自组装单分子层(SAM)作为空穴传输层(HTL)的倒置钙钛矿太阳能电池(p-i-n 型),因结构简单、兼容性强,更具产业化潜力。然而,NiOₓ表面存在 Ni²⁺和 Ni³⁺混合价态的固有问题,不仅导致 SAM 层难以均匀生长,影响电荷传输效率,高活性的 Ni³⁺还会加速钙钛矿材料分解,严重制约器件的稳定性。为解决这一核心瓶颈,中国科学院化学研究所李永舫&孟磊团队团队设计了一种创新策略:利用新型SAM分子MeOF-4SHCz靶向NiOx表面的富Ni³⁺区域,通过局域氧化还原反应原位形成S–O–Ni键;同时,常规SAM分子MeOF-4PACz继续在Ni²⁺区域通过P–O–Ni键实现稳定锚定。当这两种分子以4:1(w/w)的优化比例复合后,在NiOx表面形成了协同作用的混合SAM层,其覆盖度与均匀性得到显著提升。基于此氧化还原改进型(ROI)-SAM空穴传输层所构筑的倒置钙钛矿太阳能电池,获得了26.5%的优异PCE(认证效率26.28%),并在持续最大功率点(MPP)运行下展现出超过1000小时(T90)的长期稳定性。

慕尼黑路德维希马克西米利安大学Erkan Aydin最新Joule:溴化共轭SAM引领钙钛矿/硅电池界面革命来源:先进光伏 发布时间:2025-12-15 22:09:31

面向织构化钙钛矿/硅叠层太阳能电池中自组装分子(SAM)在粗糙表面覆盖不均、电荷提取效率受限的关键挑战,德国慕尼黑大学、南方科技大学、香港城市大学等多国联合团队创新性提出溴功能化共轭连接体自组装分子设计策略。该研究通过精准调控SAM分子结构,引入溴原子增强界面钝化,并采用共轭芳香连接体促进分子紧密堆积,从而在工业级CZ硅片上实现了高效稳定的钙钛矿/硅叠层电池。研究团队首先发现商用SAM材料4PADCB中的微量溴杂质意外提升了器件性能,进而设计合成了溴取代类似物Bz-PhpPABrCz,并与非溴化分子Bz-PhpPACz形成二元混合SAM体系。该混合SAM在织构硅表面展现出优异的覆盖均匀性、增强的电荷提取能力和显著的界面缺陷钝化效果。基于此,研究团队在织构化CZ硅底电池上制备的钙钛矿/硅叠层太阳能电池实现了31.4%的认证效率,并展现了卓越的运行稳定性。该研究以"Enhanced charge extraction in textured perovskite-silicon tandem solar cells via molecular contact functionalization"为题发表在能源领域顶级期刊《Joule》上。

Advanced Energy Materials:底部锚定实现阳离子均匀分布与无应变结晶,打造高效稳定倒置钙钛矿太阳能电池来源:钙钛矿材料和器件 发布时间:2025-12-15 22:01:48

江西理工大学团队Advanced Energy Materials:底部锚定实现阳离子均匀分布与无应变结晶,打造高效稳定倒置钙钛矿太阳能电池

光子固化可能加速向铜金属化太阳能电池的转变来源:钙钛矿材料和器件 发布时间:2025-12-15 21:59:24

美国研究人员开发了一种光子固化技术,利用激光烧结快速加热并固化温度敏感太阳能电池基板上的铜浆,同时不引起热应力。该工艺据称能生产致密、低孔隙度的铜层,并与氧化铟锡强(ITO)附着,实现低体积和接触电阻率。

基于Mxene的钙钛矿太阳能电池实现了25.75%的破纪录效率来源:钙钛矿材料和器件 发布时间:2025-12-15 21:54:20

西班牙的一个研究团队声称利用MXenes或其他二维材料制造了世界上最高效的钙钛矿太阳能电池。该器件依赖Mxene夹层,抑制非辐射复合,并在钙钛矿吸收层与电子传递层界面处提升电荷提取。

带有立体互补设计的钙钛矿-硅叠层太阳能电池效率达到32.3%来源:钙钛矿材料和器件 发布时间:2025-12-15 21:48:44

中国研究人员开发了采用立体互补界面设计的钙钛矿-硅叠层太阳能电池,实现32.12%的认证效率并提升长期稳定性。该策略优化了钙钛矿晶格中的分子适配,提高了电荷传输和器件寿命。

AFM:通过掺杂与缺陷工程实现GaOₓ的双极性载流子传输,用于高效硅异质结太阳能电池来源:知光谷 发布时间:2025-12-15 18:24:32

钝化接触是实现高效晶体硅(c‑Si)太阳能电池全部潜力的关键赋能技术。过渡金属氧化物(TMOs)因其宽带隙、可调的功函数(WF)和有效的表面钝化能力,作为钝化接触层受到广泛关注。氧化镓(GaOₓ)具有超宽带隙(≈4.8 eV)、高电子迁移率以及因其丰富的固定电荷而具有优异的场效应钝化能力,但其在钝化接触中的应用尚未被探索。

AEM:水溶性V₂O₅₋ₓ实现高效倒置钙钛矿太阳能电池,兼具高工作与反向偏压稳定性来源:知光谷 发布时间:2025-12-15 18:18:57

钙钛矿太阳能电池(PSCs)在长期稳定性方面面临挑战,尤其是在反向偏压下。

中科院孟磊Nat Commun:用于倒置钙钛矿太阳能电池的氧化还原改进型自组装单分子层来源:知光谷 发布时间:2025-12-15 18:17:21

倒置型钙钛矿太阳能电池(p-i-n pero-SCs)采用氧化镍(NiOx)与自组装单分子层(SAM)作为空穴传输层(HTL),已展现出较高的光电转换效率(PCE)。然而,NiOx表面镍价态的多样性给高质量SAM HTL的构建带来了复杂性。

华北电力大学黄浩&李美成Nat Commun:界面静电斥力抑制碘离子迁移,提升钙钛矿太阳能电池反向偏压稳定性来源:知光谷 发布时间:2025-12-15 18:16:02

钙钛矿太阳能电池(PSCs)在湿度、光照和高温等条件下的稳定性已取得显著进展,但仍面临反向偏压下的衰减问题,其主要原因在于碘离子(I⁻)的不可逆迁移。