3个原子厚的薄膜搞定一切
瑞士洛桑联邦理工大学的实验系统由一个被分隔成两个部分的容器组成,每个部分都装有不同浓度的盐水,隔在这两种盐水中间的是一层厚度只有0.65纳米的半透膜(见下图)。
渗透能工作原理:将具有纳米孔的MoS2薄膜将两种含盐量不同的水隔开,图片上方的盐分浓度更高。浓度的不同造成了两侧化学势的差异,因此盐水中的离子会向着低浓度的方向扩散。由于纳米孔带有负电,只有正离子才能通过纳米孔,因此最终产生电势差,能向外提供电能。图片来源:JiandongFeng et al,, Nature 2016
构成半透膜的材料是二硫化钼(MoS2),膜上具有纳米尺寸的小孔(直径从2-25纳米不等),盐离子可以通过小孔进入另一侧,直到两部分的盐度一致为止。
在盐离子通过小孔时,电极接收了离子携带的电荷,从而形成电流。
作为渗透能发电核心部件的半透膜,它的最大特性在于所有的纳米孔都带有负电,故而只允许正离子通过,而把带负离子挡在了原位。
这样,浓盐水中的正电离子由于浓度差不断进入稀盐水中,但负电离子留在浓盐水中。
最终,半透膜两侧形成了电压,从而可以进行发电。
半透膜上用透射电子显微镜(TEM)的电子束“钻”出来的纳米孔,图上的孔径约为5纳米。图片来源:Jiandong Feng etal, Nature 2016
首席科学家冯建东(音译,Jiandong Feng)称,该团队首次确定了纳米孔的最佳尺寸范围。
他表示,如果纳米孔太大,负电离子会和正电离子一道通过,因此会降低电压;如果纳米孔太小,那么通过的正电离子太少,电流又太弱。
此外,根据实验结果,半透膜越薄,电流越大,而联邦理工大学开发的薄膜只有3个原子厚,所以发电能力很强。
该半透膜的潜力非常巨大。根据研究团队的计算,1平米的半透膜,其30%的表面积被纳米孔覆盖,可以发电1兆瓦——足以点亮5万只标准节能灯泡。
更妙的是,薄膜材料二硫化钼的原料在自然界很丰富,同时制造起来也不难。因此,该薄膜有大规模推广的潜力。
当然,目前的技术问题在于,在扩大薄膜面积的同时,如何保证纳米孔均匀地分布在薄膜上?冯建东称,目前研究工作集中于只有一个纳米孔的薄膜,以期透彻地研究发电过程的机理。机理研究可以为日后的工业化制造提供可靠的依据。
江河入海口可以成为巨大的发电站
数十年以来,挪威、荷兰、日本和美国都尝试过利用江河入海口进行发电。一些系统直接用水力推动发电机发电,不使用薄膜,实际上与传统的水坝发电无异。也有系统利用河口的盐度差进行薄膜发电,但其薄膜不仅太脆弱,并且发电能力太低。
而最新发明的纳米孔薄膜因为其极限薄的厚度,从而带来了超高的发电效率(见下表)。用多孔纳米膜进行渗透能发电的能量密度可高达1百万瓦/平方米,而太阳能的理论最高值也只有500瓦/平方米,因此仅从发电效率来看,渗透能具有压倒性的优势。
不同薄膜的渗透能发电效率对比(Ref. 表示的是各种现有的发电薄膜),数据看,膜越薄,发电的能量密度就越高,即发电效率更高。数据来源:Jiandong Feng et al, Nature 2016
当该薄膜系统被改进到足以投入工程应用时,半透膜发电将成为可再生能源的一支生力军。
相比之下,太阳能发电和风力发电的能量来源都不足够稳定,而半透膜可以在具有盐度差的河口全天时、全天候稳定发电。
参考:JiandongFeng et al, Single-layer MoS2 nanopores as nanopower generators,Nature2016. DOI:10.1038/nature18593