发电虽少却切实可用
伯恩斯指出:“比如把这种设备与太阳能电池结合,就能在夜晚获取额外的电力,而无需额外的装置成本。”
为了证明红外辐射发电的可行性,卡帕索小组提出了两种不同的辐射能量收集器(EEH):一种是热EEH,类似于太阳能热发电机;而另一种是光电子EEH,就像光伏电池板。
第一种设备由“热”板和“冷”板组成,“热”板的温度和地球及环境空气温度相同,“冷”板装在“热”板上,面朝上,由一种高辐射性材料制成,能把热量高效地辐射向天空。研究人员在俄克拉荷马州拉蒙特进行了实验测量,根据计算,两板间的热量差每平方米在一昼夜能发出几个瓦特的电。虽然要保持“冷”板温度低于环境温度还比较困难,但这种设备证明了温差发电确实可行。
“这种方法比较直观,我们正在把人们熟悉的热力发动机原理和辐射制冷原理结合起来。”伯恩斯说。
第二种设备的原理深入到电子行为的层面,就不那么直观了。它是靠纳米电子元件——二极管和天线之间的温差来发电,这不是人们用手能感知的温度。“如果你有两个温度相同的元件,显然不能做什么功;如果两个元件温度不同,就能做功了。”卡帕索说。它的工作原理类似光电池,其核心是整流天线,利用吸收外界热量后不同电子组件之间存在温差来产生电流。
在论文中,研究人员设计了一种单体扁平设备,印上许多这种微电路而朝向天空,以此来发电。他们还指出,目前整流天线技术只能产生“可忽略的电力”,但技术的进步可能会提高发电效率。
技术挑战与未来前景
研究人员更看好第二种方案。光电子的方法虽然还很新,但根据目前的技术发展趋势,随着等离子学、微电子学、新材料和纳米制造方面的进步,还是可行的。论文中还指出了今后研究中面临的技术挑战和未来前景。
“人们研究红外二极管至少已有50年了,还没有大的进步。最近在纳米制造方面取得了一些进展,让人们能制造更好的、可升级而且可再生的纳米材料。”伯恩斯说,但即使用现在最好的红外二极管,还是有问题。“一个单回路中流过的电量越多,当你从红外辐射中收集能量时,电压就会相对越低。这也意味着,要制造高效的红外二极管非常困难。”
包括伯恩斯在内的工程师和物理学家,已经在设想能在低电压下工作的新型二极管,比如隧道二极管和弹道二极管。另一种方法是增加电路元件的阻抗,以此将电压提高到更可行的水平。
伯恩斯还指出,速度是另一项挑战。“在处理电压和阻抗问题的同时,我们还要满足速度要求。目前只有一种筛选出来的二极管,能在一秒钟交替开关30万亿次,这是红外信号所需要的频率。”
研究人员在论文中指出:“今天的技术还不足以制造有效且成本划算的光电辐射能收集器,但我们描述了一些可能在今后达到这一目标的方式。我们希望能开拓这个前沿领域,在可再生能源方面发挥辐射能收集器的作用。”