利用产业,探索布局光解水制氢、热化学循环分解水制氢等氢气制备“新赛道”。大力发展能源系统数字化智能化技术。密切跟踪新一代核电技术、下一代太阳能技术发展。高成长性产业。聚焦细分领域,突出专业化、区域化
高温电解制氢;②与碳捕集和封存相结合的热化学制氢;③太阳能热化学或光电化学水分解制氢;④辐射辅助水、甲烷或其他化学品分解制氢。目标是深化对反应和/或降解机制的理解、缺陷化学和界面形成的认知,获得材料
资金支持,推进实施“氢能攻关”和“H2@Scale”计划,以降低制氢成本,促进清洁氢的生产、输运、存储和利用,关注主题领域包括:(1)光电化学和太阳能热化学制太阳燃料。重点关注如下技术:①光电化学水解
,开发高效、耐用的光电化学水解材料,包括带隙创新、功能界面、稳定的表面催化和保护涂层;②太阳能热化学制氢,开发创新的多步骤和混合工艺,可在低于550℃或高达800℃条件运行。(2)开发和验证用于监测和
电子/多质子氧化还原反应催化剂的热化学性质;⑩二维过渡金属碳(氮)化物中精细调谐氢相互作用控制的分子研究;11用于清洁能源的氟元素选择性分离的自主发现。(4)太阳能技术。共计资助9个项目,包括
:①太阳能制氢生物纳米系统;②胶体组件可编程集成式太阳能燃料生产的可调平台;③界面光谱显微镜研究光阳极水氧化过程;④具有高载流子寿命的磷化物太阳能吸收器设计;⑤太阳能制氢和氮还原的界面现象;⑥用于太阳能转换的
结合碳捕集实现钢铁脱碳;⑥漂浮式海上风电新型构造;⑦非化石原料制大宗化学品;⑧将CCUS用于水泥制造、制氢(煤、天然气、生物质原料)和发电;⑨从环境中捕集和封存CO2;⑩酶法和热化学法利用纤维素原料生产先进
快20%,比太阳能光伏技术的速度快40%左右。处于示范阶段的技术,如水泥生产的碳捕集、利用与封存(CCUS),需在2024年引入市场;处于大规模原型阶段的氢冶金、直接空气捕集等技术最迟需在2026年
、地热能、海洋能、生物质能、核能等零碳电力技术以及机械能、热化学、电化学等储能技术,加强高比例可再生能源并网、特高压输电、新型直流配电、分布式能源等先进能源互联网技术研究。开发可再生能源/资源制氢、储氢
领域效率提升等过程减排关键技术开发;加强减污降碳协同、协同治理与生态循环、二氧化碳捕集/运输/封存以及非二氧化碳温室气体减排等末端减排关键技术开发。
加快碳零排关键技术攻关。开发新型太阳能、风能
开发。
加快碳零排关键技术攻关。开发新型太阳能、风能、地热能、海洋能、生物质能、核能等零碳电力技术以及机械能、热化学、电化学等储能技术,加强高比例可再生能源并网、特高压输电、新型直流配电、分布式能源等先进能源
互联网技术研究。开发可再生能源/资源制氢、储氢、运氢和用氢技术以及低品位余热利用等零碳非电能源技术。开发生物质利用、氨能利用、废弃物循环利用、非含氟气体利用、能量回收利用等零碳原料/燃料替代技术。开发
发展洁净低碳甚至不排放二氧化碳的、以化石能源为一次能源的发电技术以替换当前传统的以化石燃料燃烧为基础的火电及常规热化学气化制氢,同时大力发展风电、光伏和水电的全周期、全方位的发电制氢技术,並大规模生产
弃光率,是个一举两得的计划。那么,光伏如何制氢呢? 热化学法制氢 就是收集太阳能对水进行加热,从而分解出氢气和氧气,这是较为简单的方式之一,但是此种方法收集氢气较为困难,还有很多的技术问题需要解决
所谓的光伏制氢并非全新的概念,其研究主要集中在热化学法制氢、光电化学分解法制氢、光催化法制氢、人工光合作用制氢和生物制氢等。这其中,将光伏发电和电解水组合制氢组合成系统的技术,是主流发展方向。在