,旁路二极管导通,让其它正常的电池片所产生的电流从二极管通过,使太阳能发电系统继续发电。 3.早晚遮挡对横/竖向电池板影响 早晚前后排遮挡时,阴影呈和地面平行的带状遮挡。早晨遮挡阴影
系统继续发电。3.早晚遮挡对横/竖向电池板影响早晚前后排遮挡时,阴影呈和地面平行的带状遮挡。早晨遮挡阴影从上到下逐步移出电池板,下午遮挡阴影从下到到上移动,最后遮挡全部电池板。3.1遮挡对竖向放置组件
大规模制造,人工成本占比较小,具有明显的规模优势。2、智能光伏电站的内部收益率IRR相比传统电站提升3%以上。由于采用多路MPPT、多峰跟踪等先进技术,有效降低了组件衰减、阴影遮挡、施工安装不一致
、山地电站中降低不同朝向、阴影遮挡的影响,发电量提升8-10%;与跟踪系统的配合使用,跟踪控制与控制器集成,能够实现对支架的独立跟踪,提升发电量,智能控制器和跟踪支架成为最佳的伴侣。6、智能光伏电站可升级
遮挡 在分布式电站中,周围如果有高大建筑物,会对组件造成阴影,设计时应尽量避开。根据电路原理,组件串联时,电流是由最少的一块决定的,因此如果有一块有阴影,就会影响这一路组件的发电功率。 当
了组件衰减、阴影遮挡、施工安装不一致、地形不一致、直流压降等光伏阵列损失的影响,系统PR(Performance Ratio)值达到82%以上,相比传统方案平均发电量提升5%以上,内部收益率IRR提升3
、组串失配的影响,平坦地形下发电量提升5%以上;在屋顶、山地电站中降低不同朝向、阴影遮挡的影响,发电量提升8-10%;与跟踪系统的配合使用,跟踪控制与控制器集成,能够实现对支架的独立跟踪,提升发电量
。 部分遮挡环境下的光伏阵列组件输出功率曲线 ,首先,我们要知道,光伏阵列组件的输出功率曲线在理想光照环境下是一个单峰曲线,而在部分遮挡环境下则会出现多峰现象。光伏电池的输出功率与MPPT控制器
统计。从表中可以看出,随着占空比D的增大,光伏阵列组件的输出功率先是增大,后减小,并且变化显著,因此从个表中我们可以看到光伏发电系统最大功率点跟踪的重要性。 人们在光伏阵列组件部分遮挡环境下最大功率点
规模优势。2、智能光伏电站的内部收益率IRR相比传统电站提升3%以上。由于采用多路MPPT、多峰跟踪等先进技术,有效降低了组件衰减、阴影遮挡、施工安装不一致、地形不一致、直流压降等光伏阵列损失的影响
汇流箱方案的10倍以上,为准确定位组串故障、提高运维效率奠定了基础。多路MPPT技术使低遮挡、灰尘、组串失配的影响,平坦地形下发电量提升5%以上;其在屋顶、山地电站中降低不同朝向、阴影遮挡的影响,发电量
作用 图4纵向布置时被遮挡的图 图5横向布置时被遮挡的图 当组件纵向排布时,阴影会同时遮挡3个电池串,3个二极管若全部正向导通,则组件没有功率输出,3个二极管若没有
,汇流箱数量减少;3)方阵数量减少10%,相应的费用会降低。
图4的缺点:很多业主反应,早晨、傍晚的时候,下沿发生阴影遮挡时几乎没有发电量。
图5的改进措施:将竖向布置改为横向布置。一次
早晚的发电量。相对于竖向布置,横向布置能提高早晚的发电量,提高经济效益。
除了早晚的阴影遮挡,还有两种情况:1)清洗时,水渍往往都在下沿积累一层污垢;2)下雪时,雪顺着组件滑落,也会在下沿积上
的缺点:很多业主反应,早晨、傍晚的时候,下沿发生阴影遮挡时几乎没有发电量。图5的改进措施:将竖向布置改为横向布置。一次评审会上,上海院的郭家宝老师提出,组件还是要横向布置。根据郭老师的讲解,我回来又
),只有1个支路受影响,其他2个支路还可以正常输出。设计时的阵列间距只考虑冬至日6小时不遮挡,其实是牺牲了早晚的发电量。相对于竖向布置,横向布置能提高早晚的发电量,提高经济效益。除了早晚的阴影遮挡,还有两种