相同,硫化镉、碲化镉、复合背接触层等三层薄膜的沉积和后处理是获得高效率的技术关键。不同的是,需要在电池的制备过程中对在特定的工艺环节分别对透明导电薄膜、CdS/CdTe半导体层、金属背电极进行刻划,实现
)背表面电场(BSF)电池――在电他的背面接触区引入同型重掺杂区,由于改进了接触区附近的收集性能而增加电他的短路电流;背场的作用可以降低饱和电流,从而改善开路电压,提高电池效率。 (2)紫光电他
:① 单双层减反射膜;②激光刻槽埋藏栅线技术;③绒面技术;④背点接触电极克服表面栅线遮光问题;⑤高效背反射器技术;⑥光吸收技术。随着这些新技术的应用,发明了不少新的电池种类,极大地提高了太阳能电池的
(3)籽晶层或匹配层的制备
(4)晶粒的增大
(5)沉积多晶硅薄膜
(6)制备P-N结
(7)光学限制:上下表面结构化,上下表面减反射
(8)电学限制:制备背场(BSF)和前后电极的欧姆
接触
(9)制备电极
(10)钝化:晶粒间界的钝化和表面钝化
目前,几乎所有制备体单晶硅高效电池的实验室技术均已用在制备多晶硅薄膜太阳电池的工艺上,甚至还包括一些制备集成电路的方法和工艺
,同样具有较低的体电阻和背接触电阻,而且由于和高电阻p型层形成了背场,有利于Voc的提高。
2.5.3 (ZnCd)S2/CulnSe2太阳电他
为了进一步提高电他的性能参数,以
,需要形成低阻(<50k/ □)CulnSe2层,实验发现,低阻CulnSe2材料与CdS接触时,在界面处会产生大量铜结核。结核的产生使电他的效率大为降低。pin型CdS/CulnSe2电池解决了这一
磷形成n区,i为非杂质或轻掺日的本征层(因为非掺杂a。s是弱n型)。重掺杂的p、n区在电池内部形成内建势,以收集电荷。同时两者可与导电电极形成欧姆接触,为外部提供电功率。i区是光敏区,光电导/暗电导比
封装问题和构成电池的aSi材料不稳定性问题。封装问题主要是:封装材料老化和封装存在缺陷,环境中的有害气氛对电他的电极材料和电极接触造成损害,使电池性能大幅度下降甚至于失效。解决这一问题主要靠改进封装技术
(BSF)电池——在电他的背面接触区引入同型重掺杂区,由于改进了接触区附近的收集性能而增加电他的短路电流;背场的作用可以降低饱和电流,从而改善开路电压,提高电池效率。 (2)紫光电他一一这种电池最早
电池种类 转换效率(%) 研制单位 备注*j 单晶硅电池 24.7±0.5 澳大利亚新南威尔士大学 4cm2面积 背接触
接触电极等技术,提高材料中的载流子收集效率,优化抗反肘膜、凹凸表面、高反射背电极等方式,光电转换效率有较大提高。单晶硅光电池面积有限,目前比较大的为 ∮10至20cm的圆片,年产能力46MW
晶体硅光电池有单晶硅与多晶硅两大类,用P型(或n型)硅衬底,通过磷(或硼)扩散形成Pn结成制作,生产技术成熟,是光伏市场上的主导产品。采用埋层电极、表面钝化、强化陷光、密栅工艺、优化背电极及