,由作为电荷施主的共轭电解质多聚物和作为电荷受主的纳米级富勒烯组成,且在尺寸更小的界面将两者结合。其中,多聚物施主能吸收太阳光并将电子传输至富勒烯受主,因此产生电能。 研究人员还发现通过合理设计
施主的共轭电解质多聚物和作为电荷受主的纳米级富勒烯组成,且在尺寸更小的界面将两者结合。其中,多聚物施主能吸收太阳光并将电子传输至富勒烯受主,因此产生电能。研究人员还发现通过合理设计聚合物富勒烯组装形式
施主的共轭电解质多聚物和作为电荷受主的纳米级富勒烯组成,且在尺寸更小的界面将两者结合。其中,多聚物施主能吸收太阳光并将电子传输至富勒烯受主,因此产生电能。研究人员还发现通过合理设计聚合物富勒烯组装形式
,开发了智能窗技术,让光线通过,同时阻止热量,反之亦然。研究人员研发了智能玻璃涂层,可以阻止可见光,近红外光(NIR),或两者兼而有之。通过在玻璃当中嵌入铌氧化铟锡氧化物(ITO)纳米晶体,研究小组创建
太阳能光伏进入了快速发展期,太阳电池的效率在不断提高,在纳米技术的帮助下,未来硅材料的转化率可达35%,这将成为太阳能发电技术上的革命性突破。太阳能光伏电池主流的材料是硅,因此硅材料的转化率一直是制约整个
可以减少中间环节,提高效率。将第三代纳米技术和现有技术结合,可以把硅材料的转化率提升至35%以上,如果投入大规模商业量产,将极大地降低太阳能发电的成本。令人可喜的是,这样的技术已经在实验室完成,正等待
索比光伏网讯:据英国《每日邮报》7月20日报道,科学家研发的一项纳米网技术可以利用太阳能分解水产生氢气和氧气,该项技术可用来制造为车供能的新型燃料电池,并且它的效率是目前的太阳能电池的10倍。这项
相信掌握了这项技术,无污染的太阳能车将取代传统的汽油化石燃料车。他们还称,他们将用于磷化镓太阳能板中的稀有金属半导体的量减少了1000倍。荷兰代夫特科技大学研究纳米的科学家Erik Bakkers教授
从晶体和薄膜在中国市场诞生那天起,一场关于产品效率和技术路线的竞赛就敲响战鼓,晶体硅电池的性价比日新月异,薄膜电池的转换效率也节节攀升。在过去五年中,聚合物多层修饰电极型太阳能电池、纳米晶太阳
太阳能光伏进入了快速发展期,太阳电池的效率在不断提高,在纳米技术的帮助下,未来硅材料的转化率可达35%,这将成为太阳能发电技术上的革命性突破。太阳能光伏电池主流的材料是硅,因此硅材料的转化率一直是制约
。这样可以减少中间环节,提高效率。将第三代纳米技术和现有技术结合,可以把硅材料的转化率提升至35%以上,如果投入大规模商业量产,将极大地降低太阳能发电的成本。令人可喜的是,这样的技术已经在实验室完成
索比光伏网讯:荷兰Eindhoven理工大学(TU/e)和物质基础研究(FOM)基金会提出一种只产生燃料而非电力的太阳能电池原型。论文以磷化镓纳米线有效还原水为标题发表在《自然通信》杂志上
性能,但是GaP太阳能电池的大平板表面不容易吸收光线。研究人员制造很小尺度纳米线网格(500nmX90nm)解决此问题,立刻使氢的产量增加2.9%。这是GaP电池的记录,但仍比硅电池低15%。该研究
所构建的一个大平台亚太资源板块下,有着诸多的清洁能源概念公司:做地源热泵技术并融合合同能源管理的挪宝新能源、电动汽车厂陆地方舟、高性能电池企业波士顿、LED企业晶能光电、海水发电企业纳米碳管、德国