%以上,产销率100%,生产效率及效益在国内保持领先地位。我们始终把科技进步作为企业发展的突破点。企业负责人说,因为黑硅的纳米结构具有良好的吸光性能,也可以提高电池的填充因子与短路电流,从而大幅度提高
%以上,产销率100%,生产效率及效益在国内保持领先地位。我们始终把科技进步作为企业发展的突破点。企业负责人说,因为黑硅的纳米结构具有良好的吸光性能,也可以提高电池的填充因子与短路电流,从而大幅度提高
只有100纳米,经过实验,这种新型涂料可以将接收阳光的98%转变成热能,并使热能转变为电能的总效率达到20%以上。研究人员研究新型太阳能涂料:就在这个月,一个来自圣母大学
(UniversityofNotreDame)的研究小组公布了他们的最新成果,一种廉价的太阳能电池涂料,可以使用半导体纳米粒子产生能量。这种太阳能油漆的原理就是把量子点,也就是一种可生成电的纳米粒子融入到可涂抹的混合物中。专家介绍
吸收太阳能的涂料。涂料的第一层是由氧化硅制成的防阳光反射层,对照射在涂料上的阳光只吸收不反射,防止热量的损失。第二层是吸收阳光热量的金属陶瓷层。第三层是导热性良好的金属层。这三层总厚度只有100纳米
研究小组公布了他们的最新成果,一种廉价的太阳能电池涂料,可以使用半导体纳米粒子产生能量。这种太阳能油漆的原理就是把量子点,也就是一种可生成电的纳米粒子融入到可涂抹的混合物中。专家介绍,即在二氧化钛纳米
结厚度,分别为40微米和790纳米,由此生产的太阳能电池效率可以达到13%,是不含微粒的两倍多。 这项研究是特温特大学太阳能燃料项目的一部分。尽管这项技术目前的成本还比较高,但仍有应用前景。
困难在于确保PN结准确地依附于表面结构生长。在最进的一项研究中,研究员们发现了最合适的微粒高度和PN结厚度,分别为40微米和790纳米,由此生产的太阳能电池效率可以达到13%,是不含微粒的两倍多。这项
的微粒高度和PN结厚度,分别为40微米和790纳米,由此生产的太阳能电池效率可以达到13%,是不含微粒的两倍多。这项研究是特温特大学太阳能燃料项目的一部分。尽管这项技术目前的成本还比较高,但仍有应用前景。
的微粒高度和PN结厚度,分别为40微米和790纳米,由此生产的太阳能电池效率可以达到13%,是不含微粒的两倍多。这项研究是特温特大学太阳能燃料项目的一部分。尽管这项技术目前的成本还比较高,但仍有应用前景。
容易实现对锗的掺杂。这让研究人员有了一个非常有针对性的的方法来直接调整产生的纳米材料的性能。
为了在锗原子群集形成所需的多孔结构,LMU研究员蒂娜Fattakhova-Rohlfing博士发明了一种
方法能够满足这种纳米结构:初始步骤就是把微小的珠子形成三维聚合物模板。
在下一步中,锗原子群集溶液充满珠子之间的缝隙。一旦锗在小珠子的表面形成稳定的原子网络,模板就会被加热。剩下的就是孔隙率极高的纳米
的的方法来直接调整产生的纳米材料的性能。为了在锗原子群集形成所需的多孔结构,LMU研究员蒂娜Fattakhova-Rohlfing博士发明了一种方法能够满足这种纳米结构:初始步骤就是把微小的珠子形成
三维聚合物模板。 在下一步中,锗原子群集溶液充满珠子之间的缝隙。一旦锗在小珠子的表面形成稳定的原子网络,模板就会被加热。剩下的就是孔隙率极高的纳米薄膜。展开的的聚合物珠直径为50到200纳米而且形成一个