索比光伏网讯:世界常规能源供应短缺危机日益严重,化石能源的大量开发利用已成为造成自然环境污染和人类生存环境恶化的主要原因之一,寻找新兴能源已成为世界热点问题。这也使得我国光伏产业发展具有广阔前景
,并为新能源转型升级提供了良好机遇。在这种情况下,以中海阳等为代表的新能源企业正努力抓住机遇趁势而上。在各种新能源中,太阳能光伏发电具有无污染、可持续、总量大、分布广、应用形式多样等优点,受到世界各国的
:7745 (2015)。 此项研究工作是苏州纳米所薄膜太阳能电池研究的一部分。在苏州纳米科技协同创新中心(教育部2011计划)的部分资助下,苏州纳米所能源纳米技术分中心(主要包括陈立桅、马昌期
使用纳米尺度组件,乔治亚理工学院的研究者们演示了第一个光学整流器,它是一个结合天线和整流二极管功能的装置,能直接将光转换为直流电。
基于多层碳纳米管和在其上制造的微小整流器,光学整流天线可能提供
一种用于能量采集的新技术,包括不需要冷却就能运作的光电探测器、把余热转变为电力、以及高效地捕获太阳能。
在该新设备中,碳纳米管充当天线捕获来自太阳或其他光源的光。当光波击中纳米管天线时
Stutzmann小组即提出了金属催化化学腐蚀的概念并在实验室进行了初步的研究;直到2009年,美国国家可再生能源实验室(NREL)的Branz博士提出了全液相黑硅制备方法,将湿法黑硅技术朝产业化方向又推进
,同时在硅表面构成微电化学反应通道,在金属粒子下方快速刻蚀硅基底形成纳米结构。
图2 金属催化化学腐蚀原理图
以上两种产业化黑硅技术比较如下。
与常规的多晶电池相比,湿法黑硅
催化化学腐蚀的概念并在实验室进行了初步的研究;直到2009年,美国国家可再生能源实验室(NREL)的Branz博士提出了全液相黑硅制备方法,将湿法黑硅技术朝产业化方向又推进了一步。但是,他们一直未能
反应通道,在金属粒子下方快速刻蚀硅基底形成纳米结构。 图2 金属催化化学腐蚀原理图以上两种产业化黑硅技术比较如下。与常规的多晶电池相比,湿法黑硅电池不同之处在制绒这一工序,由于同样采用湿法化学腐蚀工艺
初步的研究;直到2009年,美国国家可再生能源实验室(NREL)的Branz博士提出了全液相黑硅制备方法,将湿法黑硅技术朝产业化方向又推进了一步。但是,他们一直未能解决好黑硅表面钝化难题,使得湿法
底形成纳米结构。图2 金属催化化学腐蚀原理图以上两种产业化黑硅技术比较如下。与常规的多晶电池相比,湿法黑硅电池不同之处在制绒这一工序,由于同样采用湿法化学腐蚀工艺,与现有的常规电池工艺能很好的兼容。而
重要原因就是电池成本太高。
前几年,在国家新能源产业政策的推动下,全国各地掀起了一股制造锂电池的狂潮。锂电池电芯与pack组装企业一度得到400多家(包括新能源汽车用的锂电池)其中涉足电动车用的锂电池
企业曾一度有200-300家之多。然而,轰轰烈烈的新能源制造热的背后,核心材料如正极材料的隔膜、电解液以及软包装电芯用的铝塑膜等严重依赖进口,导致制造的锂电池成本价格居高不下,同样容量的锂电池,其价格
标。光伏项目LCOE测算数据能够使人清晰地看到光伏项目单位发电量的成本水平,因此具有非常重要的实际意义。目前我国关于并网光伏发电系统的LCOE研究较少,对LCOE的认识还不够全面。
美国国家可再生能源实验室
)
式中:LCOE为平准化电力成本; Qn为系统在第n年发电量或节省的能源;Cn 为第n年的运营成本,包括投资成本、财务支出、运营维护成本和维修费用等;d为折现率;N为系统运营年限。
通过公式(1
着火,成批运输的锂离子电池甚至曾引燃运输飞机。
因此,研究者正在改进锂电池,同时寻求其替代品。一些研究者,如获得美国能源部资助的哈佛大学研究者不仅在探索新的电池原料组合,还在尝试纳米材料
。
随着气候改变加剧,人类对清洁能源的需求也与日俱增,储能技术便成了可再生能源的圣杯,过去5年来关于该技术的研究也开始取得进展。原因很简单:太阳能电池板和风力发电机只能间歇性发电,当没有阳光或风的时候
太阳能具有无污染、可持续、总量大、分布广等优点,在全球能源转型升级的环境下,它颇受到青睐。加之中国、美国、印度等国家光伏市场发展如火如荼,它更是引人瞩目。
除大型的光伏发电站外,小编为
】
太阳能生态大棚
将太阳能光伏发电系统、光热系统及新型纳米仿生态转光膜技术应用到到温室大棚,提高植物的光合作用,以环保形式,提高农作物的品质,增加农民收入