受体(让太阳能电池中的电子通过,传送至到太阳供电的装置)。然而,透过一个微米级的耙子即可排解这些聚集,并形成纳米级晶体,使得表面积倍增,从而提高2倍的输出功率。
美国斯坦福大学(Stanford
混合供体(donor)聚合物与 受体(acceptor)的许多聚合物组合可用于形成一个完整的塑料太阳能电池。遗憾的是,有些最佳组合往往因为聚集在一起而减少了电子转移时的表面积 从供体(转移电子)到
马里兰大学电气和计算机工程系助理教授杰瑞米 芒迪和研究生Yunlu Xu 以及Tao Gong设计了一种新型的纳米太阳能电池,他们预计这种电池比传统设备的效率胜出40%。这项新技术通过小型单个设备
就可以产生更多的电力,可以彻底改变太阳能产业。Xu, Gong,和芒迪将他们关于纳米结构太阳能电池的肖克利奎伊瑟效率极限的研究发表在《科学报告》期刊上,这是自然出版社的一个在线的,可公开获取的期刊。这个
不再是异想天开。这种新兴的太阳能转化设备发光太阳能聚光器(LSC)能把几乎透明的玻璃窗变成发电机,为人们提供电能。LSC技术这项新兴技术是将一部分透射光分散在玻璃窗上,被纳米粒子(半导体量子点)吸收,然后重新
发射出肉眼看不见的红外波长,再被传导到窗户边框上的太阳能电池上。洛斯阿拉莫斯国家实验室首席研究员维克多克里莫夫说。克里莫夫供职的阿拉莫斯国家实验室隶属美国能源部,成立于1943年成立,世界上第一颗原子弹和
受体(让太阳能电池中的电子通过,传送至到太阳供电的装置)。然而,透过一个微米级的耙子即可排解这些聚集,并形成纳米级晶体,使得表面积倍增,从而提高2倍的输出功率。美国斯坦福大学(Stanford
混合供体(donor)聚合物与 受体(acceptor)的许多聚合物组合可用于形成一个完整的塑料太阳能电池。遗憾的是,有些最佳组合往往因为聚集在一起而减少了电子转移时的表面积 从供体(转移电子)到
所使用的电解质主要由磷酸铁锂所制成,而制作阴极所用的电解质材料则包括钛酸锂和六氟磷酸锂。
虽然这些材料已经被普遍应用在了锂离子充电电池当中,但这些电极的厚度仅为80-90纳米,薄到可让光线穿过,从而
透明锂离子电池进行了改良,使其当被暴露在阳光下时可自行充电,而无需单独的太阳能板。
这种透明电池时由日本工学院大学Mitsunobu Sato教授和他的团队在2013年所研发的。根据介绍,电池阳极
,因此被广泛用于太阳能电池板中。但是这些材料遇水会氧化(生锈),因此无法直接用于人工树叶系统。JCAP的研究人员在电极上添加了62.5纳米厚度的二氧化钛涂层,在允许光照和电子通过的同时有效地阻止了以
。不过,该团队发现,将2纳米厚度的镍添加在二氧化钛薄膜表面,可以作为更有效且更低廉的催化剂。
这一集成系统的面积约为1平方厘米,可以将10%的太阳能转化为能储存的化学能,并可持续工作40小时
。美国能源部洛斯阿拉莫斯国家实验室与意大利米兰比可卡大学等单位研究人员组成的联合团队,在最新一期的《自然纳米技术》杂志上发表了以《采用无重金属胶体状量子点的高效大面积无色发光太阳能聚光器》为题的研究成果
。
洛斯阿拉莫斯国家实验室首席研究员维克多克里莫夫说:在这种新的设备中,通过窗户的一部分透射光被分散在玻璃窗上的纳米粒子(半导体量子点)吸收,然后重新发射出人的肉眼看不见的红外波长,这些波被引导到窗户
窗户的一部分透射光被分散在玻璃窗上的纳米粒子(半导体量子点)吸收,然后重新发射出人的肉眼看不见的红外波长,这些波被引导到窗户边上的太阳能电池上。使用这种设计,艳阳天里一扇几乎透明的窗户即会成为一个
联合团队,在最新一期的《自然纳米技术》杂志上发表了以《采用无重金属胶体状量子点的高效大面积无色发光太阳能聚光器》为题的研究成果。洛斯阿拉莫斯国家实验室首席研究员维克多克里莫夫说:在这种新的设备中,通过
,通过窗户的一部分透射光被分散在玻璃窗上的纳米粒子(半导体量子点)吸收,然后重新发射出人的肉眼看不见的红外波长,这些波被引导到窗户边上的太阳能电池上。使用这种设计,艳阳天里一扇几乎透明的窗户即会成为一个
联合团队,在最新一期的《自然纳米技术》杂志上发表了以《采用无重金属胶体状量子点的高效大面积无色发光太阳能聚光器》为题的研究成果。
洛斯阿拉莫斯国家实验室首席研究员维克多克里莫夫说:在这种新的设备中
。产品描述:2015年1月,苏州瑞晟纳米科技有限公司研发的利用印刷工艺制备的铜铟镓硒(CIGS)薄膜太阳能电池凭借17.3%的高转换效率刷新了世界记录。这项全新的世界记录已经得到中国计量科学院的认证
印刷技术制备CIGS太阳能电池的竞争力。参评理由:当今世界,限制太阳能电池大规模应用的最大问题是成本过高,严重依赖于政府补贴。而非真空的印刷式制备技术是解决太阳能电池这一问题的潜在技术。瑞晟纳米科技