)光伏方阵是光伏电站中电量损耗的重灾区,光伏方阵吸收损耗主要包含了电池组件失配、组件衰减、温升、MPPT跟踪损失、灰尘污渍遮挡损失、直流电缆线损、故障导致的组串电流异常等,光伏方阵吸收损耗的合理范围
不佳的设备。逆变器输出功率离散率和汇流箱组串电流离散率若排除逆变器本身的设备故障问题,则可以通过分析逆变器输出功率离散率和汇流箱组串电流离散率两个指标进一步分析逆变器所带电池组串是否正常运行。如果电站
逆变器转换效率是否达到设备性能要求。
3)光伏方阵是光伏电站中电量损耗的重灾区,光伏方阵吸收损耗主要包含了电池组件失配、组件衰减、温升、MPPT跟踪损失、灰尘污渍遮挡损失、直流电缆线损、故障导致的
率和汇流箱组串电流离散率两个指标进一步分析逆变器所带电池组串是否正常运行。
如果电站同一型号逆变器输出功率离散率偏大,则说明电站存在输出功率较低的逆变器。针对输出功率较低的逆变器查看汇流箱组串电流
%,则需要查看逆变器转换效率是否达到设备性能要求。3)光伏方阵是光伏电站中电量损耗的重灾区,光伏方阵吸收损耗主要包含了电池组件失配、组件衰减、温升、MPPT跟踪损失、灰尘污渍遮挡损失、直流电缆线损、故障
两个指标进一步分析逆变器所带电池组串是否正常运行。如果电站同一型号逆变器输出功率离散率偏大,则说明电站存在输出功率较低的逆变器。针对输出功率较低的逆变器查看汇流箱组串电流离散率指标,如果汇流箱组串电流
损耗一般在3%以内,如果电站的逆变器损耗大于3%,则需要查看逆变器转换效率是否达到设备性能要求。
3)光伏方阵是光伏电站中电量损耗的重灾区,光伏方阵吸收损耗主要包含了电池组件失配、组件衰减、温升
设备故障问题,则可以通过分析逆变器输出功率离散率和汇流箱组串电流离散率两个指标进一步分析逆变器所带电池组串是否正常运行。
如果电站同一型号逆变器输出功率离散率偏大,则说明电站存在输出功率较低的逆变器
逆变器损耗大于3%,则需要查看逆变器转换效率是否达到设备性能要求。3)光伏方阵是光伏电站中电量损耗的重灾区,光伏方阵吸收损耗主要包含了电池组件失配、组件衰减、温升、MPPT跟踪损失、灰尘污渍遮挡损失
汇流箱组串电流离散率两个指标进一步分析逆变器所带电池组串是否正常运行。如果电站同一型号逆变器输出功率离散率偏大,则说明电站存在输出功率较低的逆变器。针对输出功率较低的逆变器查看汇流箱组串电流离散率指标
级台风)。沿海地区的电站系统要根据当地情况,严格参照沿海建筑物的抗风抗震参数进行设计,选择具有较强耐压能力的镀锌支架,在电池组件的设计和布阵上充分考虑了抗风的卸风口,并选用组串式光伏并网逆变器。除了
材质之外,支架的厚度也非常重要。以河北地区为例,支架的厚度应不低于2.5毫米,镀锌层厚度不低于65微米,锌层表面应均匀,无毛刺、过烧、挂灰、伤痕、局部未镀锌(2mm以上)等缺陷,不得有影响安装的锌瘤
跟踪支架最大抗风150公里/小时(大于13级台风)。
沿海地区的电站系统要根据当地情况,严格参照沿海建筑物的抗风抗震参数进行设计,选择具有较强耐压能力的镀锌支架,在电池组件的设计和布阵上充分考虑了抗风的
(2mm以上)等缺陷,不得有影响安装的锌瘤。螺纹的锌层应光滑,螺栓连接件应能拧入。以上这些只是影响支架质量的部分因素,消费者可以通过肉眼判断好坏。
户用光伏系统的配重一般为水泥基础,水泥基础要
/小时(大于13级台风)。沿海地区的电站系统要根据当地情况,严格参照沿海建筑物的抗风抗震参数进行设计,选择具有较强耐压能力的镀锌支架,在电池组件的设计和布阵上充分考虑了抗风的卸风口,并选用组串式
光伏并网逆变器。除了材质之外,支架的厚度也非常重要。以河北地区为例,支架的厚度应不低于2.5毫米,镀锌层厚度不低于65微米,锌层表面应均匀,无毛刺、过烧、挂灰、伤痕、局部未镀锌(2mm以上)等缺陷,不得
电池板倾角(支架采用固定可调式)或加装跟踪设备(支架采用跟踪式)来增加倾斜面辐射量。下图对比了同一地区,不同安装方式,辐射量的差异。3逆变器容量配比逆变器容量配比指逆变器的额定功率与所带光伏组件容量的比例
包括灰尘、积雪、杂草、树木、电池板及其他建筑物等的遮挡。6组件温度特性随着晶体硅电池温度的增加,开路电压减少,在20-100℃范围,大约每升高1℃每片电池的电压减少2mV;而电流随温度的增加略有上升
电池板倾角(支架采用固定可调式)或加装跟踪设备(支架采用跟踪式)来增加倾斜面辐射量。
下图对比了同一地区,不同安装方式,辐射量的差异。
不同安装方式辐射量对比图
3逆变器容量配比
接收到的辐射量,影响组件散热,从而引起组件输出功率下降,有可能导致热斑。如下图所示,组件遮挡包括灰尘、积雪、杂草、树木、电池板及其他建筑物等的遮挡。
6组件温度特性
随着晶体硅电池