,发现石墨烯是目前唯一的能够单独存在的二维晶体材料,两人因此还获得了2010年的诺贝尔物理学奖。石墨烯非常薄,被认为是世界上最轻的材料,具有极大的强度、导电性、导热性等性能:石墨烯的强度高达130季帕
潜力的应用是代替硅制造超微晶体管,用来生产超级计算机。据分析,用石墨烯制备的计算机处理器的运行速度将会提高数百倍。这种超级计算机可以为航天飞行器力学、流体、气动、材料等计算提供更为高效的技术手段,提高
透明的,那么它能量转换效率就会大大降低。
现在主流的太阳能电池材料都是晶体硅,然而该材料很难做成透明或半透明状态。现在科研人员正在开发半透明的太阳能电池,比如有机或者染色敏化材料,但是它们的能量
找到一种与相应光敏电池系统兼容的TTE,钙钛矿电池同样如此。TTE的提出基于多层堆叠理论,就是如三明治一样将金属薄膜夹在高折射率(高指数)层和界面缓冲层之间。在钙钛矿太阳能电池中,这种TTE的制备
如果变成透明的,那么它能量转换效率就会大大降低。现在主流的太阳能电池材料都是晶体硅,然而该材料很难做成透明或半透明状态。现在科研人员正在开发半透明的太阳能电池,比如有机或者染色敏化材料,但是它们的能量
与相应光敏电池系统兼容的TTE,钙钛矿电池同样如此。TTE的提出基于多层堆叠理论,就是如三明治一样将金属薄膜夹在高折射率(高指数)层和界面缓冲层之间。在钙钛矿太阳能电池中,这种TTE的制备不需要
,那么它能量转换效率就会大大降低。现在主流的太阳能电池材料都是晶体硅,然而该材料很难做成透明或半透明状态。现在科研人员正在开发半透明的太阳能电池,比如有机或者染色敏化材料,但是它们的能量转化效率太低
电池系统兼容的TTE,钙钛矿电池同样如此。TTE的提出基于多层堆叠理论,就是如三明治一样将金属薄膜夹在高折射率(高指数)层和界面缓冲层之间。在钙钛矿太阳能电池中,这种TTE的制备不需要使用任何有害材料
了一个好行业,施正荣这样总结他的成功。施正荣出生在江苏扬中长江中的一座孤岛上。24岁时赶赴澳大利亚新南威尔士大学求学,师从国际太阳能权威、诺贝尔环境奖获得者马丁.格林,进行了十多年晶体硅薄膜电池的研究
,那么它能量转换效率就会大大降低。现在主流的太阳能电池材料都是晶体硅,然而该材料很难做成透明或半透明状态。现在科研人员正在开发半透明的太阳能电池,比如有机或者染色敏化材料,但是它们的能量转化效率太低
光敏电池系统兼容的TTE,钙钛矿电池同样如此。TTE的提出基于多层堆叠理论,就是如三明治一样将金属薄膜夹在高折射率(高指数)层和界面缓冲层之间。在钙钛矿太阳能电池中,这种TTE的制备不需要使用任何有害
如果变成透明的,那么它能量转换效率就会大大降低。现在主流的太阳能电池材料都是晶体硅,然而该材料很难做成透明或半透明状态。现在科研人员正在开发半透明的太阳能电池,比如有机或者染色敏化材料,但是它们的能量
一种与相应光敏电池系统兼容的TTE,钙钛矿电池同样如此。TTE的提出基于多层堆叠理论,就是如三明治一样将金属薄膜夹在高折射率(高指数)层和界面缓冲层之间。在钙钛矿太阳能电池中,这种TTE的制备不需要
中国科学家在《自然纳米技术》杂志上发表论文称,他们在单晶石墨烯制备上取得了一项突破。通过对化学气相沉积法(CVD)的调整和改进,他们将石墨烯薄膜生产的速度提高了150倍。新研究为石墨烯的大规模
应用奠定了基础。据科技日报8月11日消息,石墨烯是由碳原子构成的只有一层原子厚度的二维晶体材料,在电、光、机械强度上的优异特性,使其在电子学、太阳能电池、传感器等领域有着众多潜在应用。虽然需求巨大,但其制备
经过掺杂(dope),制造性能超越其他具备可调谐电/光特性之2D材料的不同种类离子半导体(ionicsemiconductor)元件;研究人员表示:高品质的2D晶体展现高效率的光激发
展现的电子特性不但独特还能在某些状况下呈倍数增加,而且仅需数个原子厚度的薄膜。因此能源部决定调查原子级厚度混合有机-无机钙钛矿薄片的电子特性,以将之作为更容易制造的石墨烯或是更罕见材料配方的替代品
:
1、停牌一年的汉能薄膜 分布式光伏助其扭亏为盈 同比增长50%
7月19日晚,停牌逾一年的汉能薄膜发电发布2016年半年度盈利预喜公告,公司上半年营业收入同比增长约50%,实现扭亏为盈。按
增长超过200%;上游薄膜发电装备产线交付获取的收入同比增长25%以上。
2、阳光电源年中预喜 同比增长超30%
七月十四日,阳光电源发布上半年年度业绩预告,预告显示阳光电源2016年1-6月份