549.12kWp。通过PVsyst进行模拟,宿州地区的光伏组件最佳角度为27度。 方阵倾角确定后,要注意南北向前后方阵间要留出合理的间距,以免前后出现阴影遮挡,前后排间距为:冬至日(一年当中物体在
间距,以免前后出现阴影遮挡,前后排间距为:冬至日(一年当中物体在太阳下阴影长度最长的一天)上午9:00到下午3:00(真太阳时),光伏组件之间南北方向无阴影遮挡。固定方阵安装好后倾角不再
安装方式、系统设计方阵排布、阵列遮挡计算、防雷接地设计、集电线路跨渠跨沟设计、场内道路、给排水,优化系统效率、保证电站有较好的经济性、可靠性、安全性,这些都是光伏电站的设计难点。
三、山地光伏
一块电池板的最大输出功率,大大缩小因为距离和遮挡等原因导致的组件失配损失,组串式方案可很好地适应山地、丘陵的阴影遮挡、组件朝向不一致等因素,同时功率颗粒度的减小,可以使电站的设计更为灵活。 1MW可以
。在静态特性模型方面主要是考虑在局部阴影下面,光伏阵列的输出特性,这个主要是从两方面进行研究的,第一是考虑如果我们光伏阵列受到一个静态局部阴影影响,输出特性是什么样子的?考虑这个云层或者是建筑物的遮挡
支架系统挂钩等零件的选取。 (5)考虑屋顶的遮挡情况。准确测量屋顶周围遮挡物的尺寸,后期用阴影分析软件建模做出屋顶可利用区域简图。太阳能电池板上的阴影遮挡会很大地影响发电量。 (6)掀开部分瓦片
;同时采用多路MPPT技术,极大地减小了PV衰减、老化或阴影遮挡等导致的各种失配损失。禾望集散式系统实现高发电、高智能、高回报、易维护的目标,为客户及业主提供最优的光伏系统解决方案。 禾望电气
太阳能光伏电站发电时段企业月度用电量达到25万度电,我们就确定了装机2MWp,应该是没有问题的,可就在进入商务谈判的前几天,业主告知,厂区南侧20米刚规划的15层高楼获批,屋顶将近1/4产生遮挡,最终我们
尺寸。因为瓦片的尺寸特别是厚度决定支架系统挂钩等零件的选取。
(5)考虑屋顶的遮挡情况。准确测量屋顶周围遮挡物的尺寸,后期用阴影分析软件建模做出屋顶可利用区域简图。太阳能电池板上的阴影遮挡会很大地影响
物的尺寸,后期用阴影分析软件建模做出屋顶可利用区域简图。太阳能电池板上的阴影遮挡会很大地影响发电量。(6)掀开部分瓦片查看屋顶结构,注意记录主梁、檩条的尺寸和间距。瓦屋顶的支架系统挂钩是安装固定在檩条
。如果荒漠地面电站出现了周期性的、较大规模的阴影遮挡,那必然在电站选址、组件布置设计上出现了失误,在此基础上还去讨论接入方案优劣就颠倒主次了。据了解,从2009年国内光伏电站大规模开发起,光伏电站都遵循
前后排之间的阴影遮挡损失
直流线路损失;
逆变器转换效率损失
本地变压器损耗;
交流线路损失;
主变压器损耗
电站自用电损耗
因为阴影遮挡。这类遮挡在城市环境下的分布式电站表现尤为突出,主要是受到周边建筑、树木等固定阴影影响。对于位置不是很理想的屋顶电站,每天周期性阴影遮挡导致组件失配损失3-5%的发电量,是有可能的