。近期被广泛关注的是钙钛矿薄膜太阳能电池。美国加利福尼亚大学伯克利分校与劳伦斯伯克利国家实验室科学家们的新设计实现了钙钛矿太阳能电池18.4%~21.7%的平均稳态效率以及26%的峰值效率,超过传统高效
薄膜太阳能电池如铜铟镓硒或碲化镉等。美国斯坦福大学与英国牛津大学的研究人员则宣布,利用涂布技术制作的串联型钙钛矿太阳能电池转换效率有望超过30%。而纵观国内市场,钙钛矿太阳能电池的商用化也按下快进键
组件电压温度系数对电站设计的影响
半导体电压随温度的变化而变化,这种变化的系数,称为电压温度系数,太阳能电池片发电原理是根据P-N结及空穴电子对原理(光生伏打效应)实现的,属于半导体,因此电池片
低于25,电压就升高,反之降低。
电压发生变化,相应的组件串电压就会发生变化,尤其是在冬夏温差大的地方。因此,在电站设计过程中,必须根据当地最低/最高温度,计算出电压变化范围,参考逆变器最大功率跟踪
。
b)积雪。积雪在部分地区对光辐照的影响较大,在每年的特定季节会对光伏组件功率输出造成一定的影响。
c)失配损失。失配损失主要产生在线路并联和串联的过程中。一方面由于组件出场功率与发电参数
。
d)遮阴。阴影遮挡有很多种情况。首先阵列之间的前后排遮挡是很难避免的。需要通过设计尽量减少。另外周边建筑物情况,季节性杂草生长都会导致组件的遮阴损失。很好的估算这方面损失可以帮助精准评估电站的发电量
Voltaics的纳米线太阳能电池技术已能够成功对太阳能电池薄膜纳米线进行校准定位,当将其作为一个PN结串联集成在晶硅组件上时,纳米材料使得光伏组件实现了27%的转换效率。荷兰埃因霍温技术大学科学家通过纳米
多种多样低成本的光学装置在光伏组件中的应用将有望用最简单的方式获得成倍的光吸收效果,从而使大幅提升组件转换效率成为可能,为我们组件设计提供了一种新的思路。3、在系统层面,智能跟踪器、物联网技术及智能控制云
范围内的大型光伏系统的输出进行整流。现阶段的主流产品具有自整流设计,通过双极性电晶体和场效应电晶体来实现。 串联逆变器只允许接收通过独立串行输送的信号,所以额定功率在1~3kWp。 复式串联逆变器
整个的发电效率。
光伏阵列一般是由20(21,22)块组件串联而成,然后再由多个组串并联而成。
P-V特性曲线也是先串联再并联生成阵列的特性曲线,MPPT跟踪的路数越多越能降低组件的木桶效应
整套光伏发电系统里面,直流/交流线缆的线损要控制在5%以内。为此,在设计上要采用导电性能好的导线,对应的光伏方阵要用对应直径的直流/交流线缆。
施工时不允许偷工减料,一定要确保线缆良好的导电性和
组件发电量低下或失效。在采用组串逆变器的系统中,由于每路组件之间为串联关系,一块组件发电量的低下,会大大拉低一串组件的发电量。我们通常把这样的现象叫做短板效应,它是影响光伏系统输出的重要因素之一。另外,对于
需要自己维护,对于串型系统,由于无法监控到每块组件,居民很难发现组件故障,诊断故障需要需要专业人士上门服务。长期检查系统设备是否存在异常,检查控制器的运行工作参数点与设计值是否一致。雷雨过后或雷雨季到来
,会引起个别组件发电量低下或失效。在采用组串逆变器的系统中,由于每路组件之间为串联关系,一块组件发电量的低下,会大大拉低一串组件的发电量。我们通常把这样的现象叫做短板效应,它是影响光伏系统输出的
点与设计值是否一致。雷雨过后或雷雨季到来之前,检查方阵汇流盒以及各设备内安装的防雷保护器是否失效,并根据需要及时更换。此外,某一块组件失效或逆变器故障,需要及时购置设备或支付不可预期厂商维修费用,维护
、电力设计研究院、大型金融机构、光伏发电设备企业等近300人参与此次盛会,共同探讨光伏发电产业如何走上质量之路、效率之路。会上,杭州禾迈电力电子技术有限公司总经理杨波发表了主题为《从逆变器角度看光伏发电
99.9%,其他可能更大的制约因素是哪些方面呢?比如怎么让发电的时间更长。太阳能是随季节和时间波动的,发电量每天、每周、每季的差异都很大。传统的电力电子逆变器是针对传统的电源输入,按额定功率和额定效率设计
,不是静态的。从太阳能整个产业链来说,从各种部件到运输、生产到设计、安装、运维,所有环节全部都充满风险,只解决其中一个部分或几个部分是不够的。国电光伏总工程师吴协祥将问题总结为三类:发电量保证、可靠性
是由多块电池组件串联或并联起来,以获得所期望的电压或电流的。为了达到较高的光电转换效率,电池组件中的每一块电池片都须具有相似的特性。在使用过程中,可能出现一个或一组电池不匹配,如:出现裂纹、内部连接