当前位置:首页 > 光伏资讯 > 光伏技术 » 单晶/多晶技术 > 正文

国际光伏技术路线图详解:晶硅电池转换效率差异

来源:王淑娟公众号发布时间:2016-07-21 11:07:27

光伏发电,是利用半导体材料的“光生伏特效应”,将光能转化为电能给负载供电的过程。其物质基础是半导体材料。顾名思义,半导体材料是导电性能介于是导体(如金属)和绝缘体之间的材料,该材料能够吸收太阳光中的光子,体内产生负电荷(电子)和正电荷(学术上称为空穴,按带正电的粒子理解即可),但正负电荷会在极短的时间聚合在一起,将得到的光能释放。因此还需要一种结构,使光照产生的正电荷和负电荷分离,使它们在半导体的两端积累(伴随电压的生成),此时在半导体两侧印制电极,再用导线连接负载(如灯泡)形成电路,电路中就会有电流通过,为负载供电。这种结构便是——PN结。

以半导体Si(硅)为例,在其中掺入高价态的磷原子,Si中就会有一些能自由运动的正电荷,称为N型Si;在其中掺入低价态的硼原子,Si中就会有一些能自由运动的负电荷,称为P型Si。使N型Si和P型Si连在一起,在连接的界面处正负电荷中和,剩下带电的磷离子和硼离子,他们能起到分离光照产生的正电荷和负电荷的作用(就像半透膜),该界面区便称为PN结。

因此,当光照在上述N型和P型Si的连接体时,N型Si和P型Si内部都会产生正电荷和负电荷(但正负电荷之间仍相互吸引束缚在一起),它们在一定时间内随机运动到半透膜PN结附近,由于PN结的作用,正电荷被送往P区,负电荷被送往N区,使P区和N区分别带正电荷负电,形成电压。正电荷和负电荷的产生、分离和收集是光生伏特效应的三大关键过程。

除了Si、Ge这样的单质半导体,还有化合物半导体(GaAs、Cu2Se等)乃至有机半导体材料,它们都可以制备成太阳能电池。因08年左右多晶硅材料的价格高涨,各种薄膜太阳能电池(CdTe、CIGS、染料敏化太阳能电池等)的研究一度火热,但随着硅材料价格回归理性,而薄膜电池存在成本和稳定性等劣势且转换效率遇到瓶颈,硅(单晶硅和多晶硅)太阳能电池基本上占领了商业化市场,取得了转换效率与成本的平衡。

晶硅电池又分为单晶硅电池和多晶硅电池。单晶硅和多晶硅太阳能电池都采用半导体材料Si以及相同的电池片结构(如上图):一般P型Si作为基底,表面扩散磷形成PN结,外面再镀一层减反射膜。不同之处在于单晶硅片切割自单晶硅棒、多晶硅片切割自多晶硅铸锭。硅棒采取类似蓝宝石等单晶材料的生长方式,而Si锭的工艺路线类似钢铁材料,前者明显较后者更精致,得到的半导体杂质、缺陷更少,相应的成本也更高(但近些年,单晶硅在后续切片过程中的成本优势基本抵消了多晶硅铸锭的成本优势)。单晶的特点是原子排列短程有序、长程也有序,而多晶仅短程有序,存在晶界。

光伏行业最新动态,请关注索比光伏网微信公众号:GF-solarbe

投稿与新闻线索联系:010-68027865 刘小姐:news@solarbe.com

索比公众号
推荐新闻
艾能聚宣布多晶硅电池片生产线临时停产!

艾能聚宣布多晶硅电池片生产线临时停产!

艾能聚发布公告称,受技术迭代及市场需求影响,为减少损失及整体经营业绩的角度考虑,经公司管理层讨论决定,近期对公司多晶硅电池片生产线实施临时停产,停产时间至2024年3月31日,后续复产情况视未来市场需求订单情况而定。

艾能聚多晶硅电池分布式光伏电站
2024-02-05
26.31%!光伏新秀再创辉煌

26.31%!光伏新秀再创辉煌

新春临近,万象更新。中环新能源控股集团旗下中环低碳(安徽)新能源光伏科技有限公司(简称:中环低碳)自主研发生产的182N型高效单晶硅电池(TOPCon)转化效率取得重大突破,经国家光伏产业计量测试中心(NPVM)第三方测试认证,全面积电池转化效率达到26.31%,开路电压达到739.6mV,打破了在2023年10月31日创造的26.06%的效率纪录。以毋庸置疑的技术实力,夯实了中环低碳稳居光伏电池行业“量产转换效率榜单”第一梯队的行业地位。

中环低碳N型高效单晶硅电池光伏产业
2024-02-02
26.1%光电转换效率的钙钛矿电池诞生

26.1%光电转换效率的钙钛矿电池诞生

近日,中国科学院合肥物质科学研究院固体物理研究所(以下简称固体所)、中国科学院光伏与节能材料重点实验室研究员潘旭、田兴友团队与韩国成均馆大学教授Nam-Gyu Park、华北电力大学教授戴松元合作,首次发现阳离子分布不均匀是影响钙钛矿太阳能电池性能的主要原因,并成功制备出“均匀化”的钙钛矿太阳能电池,获得26.1%的光电转换效率,认证效率为25.8%。相关研究成果日前在线发表于《自然》。

钙钛矿太阳能电池光电转换效率
2024-02-19
返回索比光伏网首页 回到国际光伏技术路线图详解:晶硅电池转换效率差异上方
关闭
关闭