TFBZ修饰的1.67eV和1.79eV无MA宽禁带钙钛矿电池分别实现了22.78%和20.21%的光电转换效率,并表现出优异的操作稳定性。构建的无MA全钙钛矿叠层电池实现了29.01%的认证效率,是目前无MA全钙钛矿叠层电池中的最高记录。
提出分子桥接新策略:为SAM/钙钛矿界面工程提供多功能分子设计范式。深度精度图1:4Br-BPA分子结构及其界面调控机制该图系统展示了4-溴苄基膦酸分子的化学结构及其在钙钛矿太阳能电池中的多功能界面调控作用。结论展望本研究通过引入4Br-BPA分子桥接层,成功实现了倒置钙钛矿太阳能电池界面的多功能协同优化,最终获得26.59%的高效率与卓越的长期稳定性。
中国光伏技术再次迎来高光时刻!一项突破性的研究正为TOPCon电池的效率提升打开新思路。来自扬州大学的科研团队通过精细的后表面处理工艺,成功将TOPCon电池的转换效率推至24.78%——别小看这个数字,它背后隐藏的,是一场关于光、电与材料表面的微观博弈。目前TOPCon技术虽已成为主流,但背表面复合高、光吸收不足等问题始终制约其性能突破。一旦突破这些瓶颈,无疑将强化TOPCon技术在下一代光伏竞争中的优势地位。
随着全球对清洁能源需求的不断增长,太阳能作为一种可再生、无污染的能源受到了广泛关注。钙钛矿/硅叠层太阳能电池因其兼具高效率和低成本的潜力,成为了光伏领域的研究热点。传统单结硅太阳能电池虽然技术成熟,但其理论效率极限约为29%,难以满足日益增长的能源需求。而钙钛矿材料具有优异的光电性能,如高吸光系数、长载流子扩散长度等,将其与硅电池结合,有望突破单结电池的效率瓶颈。
论文概览贵州大学吕梦岚与孙艳明团队开发了两种基于噻吩扩展咔唑的自组装单分子层材料——2PAThCz与4PAThCz,作为高效空穴传输层应用于有机太阳能电池。图4:器件性能与稳定性全面评估该图系统比较了不同SAMs基有机太阳能电池的性能。结论展望该团队通过理性分子设计,成功开发出两种噻吩扩展型SAM材料2PAThCz与4PAThCz,其中4PAThCz凭借其优异的溶解性、高有序性和强界面作用,在三元有机太阳能电池中实现了20.78%的效率突破。
相比之下,2PACz的SFG信号无明显变化,说明Th-Cz的瞬态共振结构促进了高度有序的分子排列。图5:器件性能与稳定性全面评估该图系统比较了不同空穴传输层有机太阳能电池的性能和稳定性。这些结果证实了瞬态偶极策略对不同活性层和基底的广泛适用性。基于该策略的OSCs实现了20.67%的认证效率,柔性器件效率达19.63%,均创下相应体系纪录。
结论展望本研究通过表面硫化构建Pb-S键异质结,首次实现倒置钙钛矿电池效率突破24%,同时解决长期困扰的界面稳定性与离子迁移问题。该创新不仅验证了“强化学键合-能级调控-晶格匹配”的协同机制,还为钙钛矿界面工程提供新思路——通过构建稳定无机-有机杂化界面,平衡效率与稳定性。这项研究为高效、稳定又环保的钙钛矿电池商业化扫清核心障碍,未来清洁能源普及再添强动力。
本研究韩国蔚山国立科学技术学院Seung-JaeShin、ChangdukYang和高丽大学HanulMin等人提出一种非挥发性固态替代物——4-吡啶,它能稳定锂离子并促进双三氟甲磺酰亚胺锂复合物的形成。采用4CP的钙钛矿电池效率达26.2%,并在最大功率点跟踪下运行3000小时后仍保持80%初始性能。4CP的应用显著提升了n-i-p结构钙钛矿电池的稳定性。研究亮点:非挥发性固态添加剂4CP替代液态tBP:4CP具有高熔点和低挥发性,能在高温下稳定存在,避免tBP挥发导致的Li失稳和副产物生成。
这种分子杂化桥接策略的实施使倒置钙钛矿太阳能电池实现了26.64%的功率转换效率,跻身该器件架构报告的最高效率之列。通过解决埋藏的钙钛矿/ITO接触的长期限制,该研究为钙钛矿太阳能电池的开发提供了重大进展,该电池将高效率与长期耐久性相结合,从而加速了其向实用光伏技术的潜在过渡。
钙钛矿太阳能电池(PSCs)及钙钛矿/硅叠层电池是光伏领域的“潜力股”,但要实现工业化,空穴传输层(HTL)是关键瓶颈。传统有机, HTL易开裂、难大面积制备;无机NiO虽稳定,但常规射频(RF)溅射制备的 NiO 导电性低、界面稳定性差,严重限制电池效率。



