本文介绍了一种利用激光技术制备高效背接触硅异质结太阳能电池的方法,实现了27.3%的效率,创下了新的纪录。文章针对背接触电池制备过程中存在的复杂性和效率损失问题,提出了三个关键工艺改进:密集钝化接触、无激光损伤的激光刻蚀和通过优化湿化学工艺控制刻蚀深度。此外,文章还探讨了在太瓦规模下,如何减少对稀有铟和贵金属银的依赖,并展示了无铟和银背接触电池的制备,分别实现了26.5%和26.2%的效率。该方法为高效背接触硅异质结太阳能电池的制备提供了新的思路,并有望推动光伏技术在建筑和交通领域的应用。
图1. HBC太阳能电池的发展。a. 最先进的HBC太阳能电池配置。b. 接触电阻率(pc)和复合电流密度(Jo)对效率模拟的影响。c. 电学阴影效应:通过6个间距的线性光束诱导电流(lBIC)测量显示,由于横向空穴传输损失,N-接触处的电流收集低于P-接触处。红色N和蓝色P分别标记N-接触和P-接触的周期性位置。还展示了一个间距内的损失机制示意图。d. P-接触至N-接触(P/N)比例和间距对效率模拟的影响。红色五角星标记了记录电池的最优P/N比例和间距组合。e. 由ISFH_CalTeC(哈梅林太阳能研究所,校准和测试中心)认证的记录电池的电流-电压(IV)和功率-电压(PV)曲线。f. 记录电池的EQE(在ISFH_CalTeC测量)和反射(内部测量)曲线。
图2. 用于HBC的致密钝化N接触。a. 三种抑制外延生长的方法。b. 相对反应速率系数K*与不同温度下的活化能之间的关系。蓝色线表示Si-Si二聚体在较低极限的活化能。c. 经过不同i0层钝化的晶片的有效寿命。入口雷达图定性比较了不同i0层在钝化方面的性能。d. 报告工作和本研究中主要团队CVD温度的总结9,10,19,29-34。e. 在190℃和240°C下制备的不同微结构因子的i0层的FTIR光谱。展示了SH2和Si峰的高斯曲线拟合。f. 使用Cox和Strack方法(CSM,扩展数据图1)的接触电阻率的线性拟合曲线。在图2 c-f中显示的结果中,i1总是被调整以与i0具有相同的R*。g. 不同i0层在激光通量下的i0/i1/i2堆叠钝化有效寿命的进展。
图3. 激光图案化过程。a. 激光束操作模式:单次射击与重叠。激光射击轮廓的高度代表了光斑处的能量强度。激光斑点在光学显微镜下进行检查。b. 随着激光通量增加的P接触温度模拟。c. N接触钝化质量的比较,通过5x10^15 cm^-3处的有效寿命指示,与模拟的i层温度。点1和2表示有效寿命曲线上的第一和第二个转折点。d. 内部测量的i:a-Si:H, n:a-Si:H, p:a-Si:H, SiNx(n=2.5)和ITO层的吸收系数,以及c-Si的参考。e. 在P2和P3期间,随着SiNx厚度的变化,模拟i层温度。f. P2激光通量后堆叠层内的温度分布。g. P3激光通量后堆叠层内的温度分布。
图4. 太瓦级可持续性分析。a. PV年产量和关键材料年供应量。b. 不同ITO厚度的HBC太阳能电池效率。c. 使用Ag电极和Cu电极金属化的HBC太阳能电池效率。入口SEM图像显示了Cu电极的横截面形态。d. HBC、SHJ、TOPCon和PERC的ESMRC图表。e. 通过光刻(HBC-Photo)或激光P3(HBC-Laser)图案化的HBC的ESMRC图表。f. PERC、TOPCon、SHJ和HBC的工艺时间。标记的是工艺中的最高温度步骤。在b和c中,顶线、底线、盒内的线和盒子分别代表最大值、最小值、中位数和25-75%的分布。
责任编辑:周末