科学家发现影响钙钛矿太阳能电池效率的原因,并改写未来走向

来源:物理学极客发布时间:2021-05-07 08:28:35

理论上来说,借由混合正确的材料而做出的钙钛矿(perovskite )结晶能够将光电转换效率推向超过30% ,胜过矽基太阳能电池(目前为止最丰富的太阳能电池技术)的效率,且成本也较低。这些结果在论文上都很棒,但实际上,有某个东西让此技术没有办法表现得这么好。

在正确的情况下结合钙、钛、与氧的话,就会形成重复的分子单元,这些分子单元看起来像一堆在角落相连起来的盒子。不论参与其中的元素,这种特别的结晶图案被称作钙钛矿结构。

钙钛矿在人类寻找能够便宜且有效地捕捉太阳能的方法中贡献了很多。借由撒上有机分子,这些结晶结构已经能够将1/4 以上落于它们上头的光转换成电力。

比方说,若从碘化铅出发,将碘化铅丢到譬如甲胺(methylammonium)等有机化合物中来获得正电,在撒上一些阳光,你就正在产生一些电流的路上了。

 


 

效率下降元凶

为了在这能量转换上达到超过25% 的效率,工程师们很快地学到,确保有足够的碘化物是有偿的,这似乎是要确保在钙钛矿晶格中的任何缺陷都好好地且完全地被填满。

但是,此假设从来没有完整地经测试,因此来自圣塔芭芭拉加利福尼亚大学(University of California, Santa Barbara)的研究人员回到第一原理来决定到底真的发生了什么事。

当研究团队透过最尖端的计算,来分析当电子迁移过有机分子与碘化铅的混合结构时,影响电子的量子行为时,他们发现加入更多的碘化物并不是实验所认为正确的步骤。

结果发现,系统中的缺陷并不在任何人所预期之处:并不是钙钛矿晶粒中的缺陷,而是先前被认为坚不可摧的单元,即有机成分,造成了结构的弱点。事实证明有机成分的氢能够马上消失。

主要研究员与材料工程师张协助理教授说:甲胺碘化铅是典型的混合钙钛矿。我们发现要断开其中一个键结,并且从甲胺分子上移掉一个氢原子是多么的容易。

氢的空缺在电路中形成了不便的坑洞,导致当太阳光从周围的钙钛矿结构中使电子自由化时,阻碍了电流的产生。张教授说,当这些电荷陷在空缺中时,它们就再也无法进行有用的工作,例如对电池充电或驱动马达,因此效率下降。

改善方法与未来走向

虽然在目前阶段,这个过程完全是理论的,但是该计算也让团队能够在此缺陷的周围找出方法。其中一个与实验结果相匹配的可能性是在碘化物浓度中找寻一个中间值。

另外,将原本的有机分子换成另一种例如铯(cesium)的阳离子,或者更好地,换成一种相似的有机化合物,例如甲脒(formamidinium)的话,也可以导致根本效率上的改善。

将这个理论研究转换成生产电力的实际方法需要更多的测试与计划。在计算上可行的方法需要能够整合入制程中,并利用此制程在甲脒分子的周围长出没有缺陷的钙钛矿晶圆。为了让钙钛矿有希望主导能源生产市场,会需要在金融与功能方面都展现出其价值。

对矽的预测显示,要使其超过其理论极限的30%,还有很长的路要走。但是若考虑到钙钛矿在过去十年中获得的进步,钙钛矿太阳能电池可能会在不久的将来取得重大突破。


索比光伏网 https://news.solarbe.com/202105/07/338281.html
责任编辑:zhoutianwei
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
钧达股份:正积极推进钙钛矿及钙钛矿叠层电池的商业化应用来源:证券时报e公司 发布时间:2025-12-23 16:36:15

钧达股份12月22日在机构线上电话会议表示,公司深耕光伏电池技术研发,在下一代钙钛矿技术领域布局深远,已与仁烁、中科院、苏州大学等单位开展研究,已实现关键突破:钙钛矿叠层电池实验室效率达32.08%,居于行业领先水平;2025年11月完成首片产业化N型+钙钛矿叠层电池下线,攻克底电池结构优化、高效介质钝化膜沉积等核心技术,具备独立开展叠层工艺研发与小规模生产的能力,正积极推进钙钛矿及钙钛矿叠层电池的商业化应用。

苏大袁建宇团队AM: 倒置钙钛矿太阳能电池实现 26.11% 的冠军效率!来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:15:02

效率:DCA-1F共SAMs器件表现最优,冠军PCE26.11%,开路电压1.179V,短路电流密度25.89mA/cm,填充因子85.49%;DCA-0F、DCA-2F共SAMs器件PCE分别为25.21%、25.05%,均高于纯MeO-2PACz对照组。稳定性:30-50%湿度环境下储存1000小时,DCA-1F共SAMs器件保持90%初始PCE;1太阳光照下最大功率点跟踪1000小时,仍维持~90%效率,而纯MeO-2PACz器件500小时后效率衰减超50%。DCA分子与MeO-2PACz在溶液状态下自聚集行为的示意图。近期报道的基于共自组装单分子层策略的高效钙钛矿太阳能电池性能汇总。

目前最高值!AFM:双重钝化策略使钙钛矿电池太阳能-氢能转换效率达6.5%来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:13:06

FASCN促进钙钛矿晶粒长大,PDAI减少表面缺陷,共同抑制非辐射复合并提升电荷提取效率。进一步通过三元富勒烯混合物优化电子传输层,改善能级对齐并降低界面能量损失,使小面积器件的开路电压从1.41V提升至1.60V,能量转换效率达9.4%。该系统太阳能-氢能转换效率达6.5%,是目前报道的单吸收体PV-EC系统中最高值。单吸收体水分解效率创纪录:将优化后的1.0cm器件集成于PV-EC系统,实现6.5%的太阳能-氢能转换效率,为目前单吸收体光解水系统最高值。

27.2%!中科院游经碧团队Science:HVCD策略制备高效率钙钛矿太阳能电池来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:11:11

近期,中国科学院半导体研究所游经碧研究员领导的团队发现,基于MACl制备的钙钛矿薄膜存在垂直方向上氯分布不均匀的问题,主要原因是MACl中的氯离子在钙钛矿结晶过程中迅速迁移至上表面引起富集。基于所开发的氯元素均匀分布的钙钛矿薄膜,团队研制出经多家权威机构认证、光电转换效率为27.2%的钙钛矿太阳能电池原型器件。该研究实现了钙钛矿太阳能电池效率与稳定性方面的协同提升,将为其产业化发展提供重要支撑。

浙江大学王勇 AEL: 离子位点竞争策略用于增强钙硅叠层光伏器件中宽带隙钙钛矿的稳定性来源:先进光伏 发布时间:2025-12-23 11:00:37

论文概览宽带隙钙钛矿的稳定性是实现高效钙钛矿/硅叠层光伏器件的关键,但由于宽带隙钙钛矿中卤化物偏析导致的不稳定性仍然是一个重大挑战。结论展望本研究创新性地提出了一种离子位点竞争策略,通过精心设计的多Cl-源前驱体组分优化,实现了Cl离子在钙钛矿晶格与间隙位点的可控分布。

南京工业大学曹久朋&秦天石AEL:调节宽带隙钙钛矿结晶并抑制相位分离制备高性能钙硅叠层器件来源:先进光伏 发布时间:2025-12-23 10:58:16

论文概览宽带隙钙钛矿太阳电池是叠层光伏器件的关键组成部分。然而宽带隙钙钛矿中较高的溴离子含量容易导致复杂的结晶过程和薄膜质量的降低。光稳定性测试中PA改性器件在1000小时连续光照老化后保持90.1%初始效率,远超对照组,证明2D钙钛矿通过结晶调控与相分离抑制实现钙硅叠层器件光电转换效率和长期稳定性的协同突破。这项工作为制备高质量宽带隙钙钛矿以及高性能钙硅叠层太阳能电池提供了重要的材料设计以及工艺路线指导。

黄劲松AEM:理解钙钛矿太阳能电池中基于膦酸分子的空穴传输层来源:知光谷 发布时间:2025-12-23 09:59:38

自组装单分子层已成为钙钛矿太阳能电池中一类重要的界面材料,能够调控能级、提升电荷提取效率,并改善器件效率与稳定性。其中,基于膦酸的自组装单分子层因其可与透明导电氧化物形成共价键,作为超薄、透明且可调控的空穴传输层而备受关注。解决这些挑战是将SAMs推向商业化钙钛矿太阳能产品的关键。

AEM:环境条件对无反溶剂两步法FAPbI₃薄膜及太阳能电池性能的影响来源:知光谷 发布时间:2025-12-23 09:58:30

综上,该研究表明,在干燥气氛中制备活性层或在最终退火时引入适度湿度,可获得两步法FAPbI太阳能电池的最佳性能与稳定性。

港科大周圆圆、港理工蔡嵩骅等人NC:揭秘钙钛矿电池性能的“隐形杀手”——晶内杂质纳米团簇来源:先进光伏 发布时间:2025-12-22 16:29:28

香港科技大学周圆圆、香港理工大学蔡嵩骅等研究团队,通过低剂量扫描透射电子显微镜首次在铯掺杂混合阳离子钙钛矿薄膜中,发现了一种新型亚稳态晶粒内杂质纳米簇。核心技术亮点首次发现晶粒内隐藏杂质:利用超低剂量扫描透射电镜,首次在原子尺度上直接观测并解析了隐藏在钙钛矿晶粒内部的亚稳态ABX型杂质纳米团簇的晶体结构。

同济大学材料科学与工程学院陆伟团队关于高熵钙钛矿氧化物材料用于低频电磁波吸收的最新研究成果发表于《科学·进展》来源:钙钛矿材料和器件 发布时间:2025-12-22 13:52:25

论文第一完成单位为同济大学材料科学与工程学院。同济大学陆伟教授与袁宾研究员为论文通讯作者。陆伟教授团队以电磁功能材料为主要研究对象,在多功能集成电磁防护材料等方向进行了系统性研究。在国家重点研发计划、国家自然科学基金等项目的支撑下,近期多项电磁防护材料研究成果发表于高水平期刊。

紫色光/紫外光线诱导的卤化物钙钛矿太阳能电池钝化失效来源:钙钛矿材料和器件 发布时间:2025-12-22 13:50:34

胺基末端配体,无论是直接使用还是以二维钙钛矿的形式使用,都是钙钛矿钙化剂中的主要缺陷钝化剂,并且显著推动了各种钙钛矿太阳能电池达到最高效率。然而,即便是这些最先进的钙钛矿太阳能电池,在运行过程中仍会迅速降解,这引发了对钝化耐久性的担忧。总之,研究结果揭示了一种普遍机制,即紫色光/紫外光线会导致胺基端配体的去钝化,而这类配体是钙钛矿太阳能电池的主要缺陷钝化剂。