浅谈表带触指技术及其在光伏连接器中的应用

来源:史陶比尔(杭州)精密机械电子有限公司发布时间:2019-06-14 16:31:57

光伏产业发展至今,技术的革新层出不穷。对于光伏连接器来说,仅仅经历了两代的转变,或许“稳”才是其发展之道。“稳”意味着可靠性和安全性,这与连接器厂商的电连接技术水平和经验息息相关。作为一种导电介质,表带触指是经过特殊成型的弹性连接元件,能够显著改善电连接和能量传输质量,使连接器具备持续低的接触电阻。

1. 光伏连接器简史

在光伏连接器未出现之前,光伏电站的连接主要通过“splice”(螺丝端子或接合连接件)方式来实现。随着行业的发展,业内对快速、安全和易操作的连接方案需求愈发强烈。

1996年,一种新型的插入式连接器(plug-in connector)应运而生,这就是史陶比尔MC3光伏连接器。 MC3是真正意义上的光伏连接产品,它跟“splice”是完全不同的两种连接方式,它的意义在于重新定义了光伏组件的连接。2002年,史陶比尔MC4面市,再次重新定义了光伏连接器,它真正实现了“即插即用”(plug and play)。随着光伏电站系统的要求越来越高,不管是从标准层面还是安全层面,MC4出现并取代MC3成为一种必然。MC4从2002年研发并推向市场至今,已经成功应用了近17年,逐渐成为行业的一种标准。目前,市面上连接器产品种类繁多,但无论从结构还是外形上,大都采用MC4的样式,因此我们可称其为“类MC4”。

图片1

图1 光伏连接器的演变

从电连接形式来看,“splice”是采用硬连接,而史陶比尔MC3和MC4连接器则使用了表带触指连接技术。史陶比尔表带触指技术,在电连接器领域已经应用超50年,广泛应用于光伏、输配电、自动化和电动交通等20余个行业。

2. 表带触指技术

电连接是指通过机械力将两个带电导体连接起来的可分连接。然而,该机械力作用产生的接触覆盖面(表面接触区域)并不等于用于负载电流的有效接触面。有效接触面积明显小于表面接触面积,电流通道集中在单个接触点,从而导致电阻增大。也即,看似面与面的连接,其实是点与点的连接。

图片5
 

图2 表面接触区域与有效接触面

MULTILAM技术,也称为表带触指技术,即在两个接触面之间建立平行接触点。每一个接触页片形成独立的弹性负载载流桥,这样就能大大减少整个接触电阻。根据给定的每一个接触页片的接触力、几何结构、弹性特征以及表面材质的硬度和属性,可以准确地计算出接触电阻。

MULTILAM的接触电阻Rl相当于并联连接的接触页片的电阻。每一个接触页片的集合形状均为实现长久的工作寿命而设计。页片恒定的弹性压力可以使接触界面之间的连接保持稳定,从而实现恒定的低电阻(见图3)。


 

图3 表带触指原理

3. 表带触指技术在光伏连接器中的应用

相较于输配电等行业的各类型表带触指应用,光伏连接器所使用的表带触指则较为单一。前文所述光伏连接器的“稳”,一是指二十多年来光伏连接器的结构和外形变化不大,另一方面则是光伏连接器在长期使用中应体现出的稳定性,这一点与表带触指密切相关。

表带触指根据不同的应用环境会在材料、镀层、类型、尺寸、正压力、安装槽设计等等方面有着严格的规定。本文着重从尺寸配合及表带触指整体工艺等角度进行分析。

3.1 配合尺寸

出于市场考虑,很多厂家在宣传时提到“MC4兼容”的概念。其实这是一种误导,无论是史陶比尔还是第三方认证机构都明确表明禁止互插,有些国家还从法律法规上对光伏电站中所用连接器进行了规定。

连接器互插无法保证核心元器件—表带触指的长期有效接触。对于这类连接,安装槽的尺寸公差及表带触指与金属件的配合尺寸公差都是经过史陶比尔反复试验及计算总结出来的。虽然其它连接器厂商声称可与MC4互插,但是由于金属件、MULTILAM及安装槽的不确定性会造成该部分电阻的增加。此外,还需要强调的是光伏连接器在使用中的长期有效性,尽管有些连接器在与MC4互插后初始电阻增加不明显,但这并不意味着几个月甚至几年之后电阻的稳定性。为了验证以上理论,史陶比尔针对不同连接器互插进行了TC200+DH1000以及短时间大电流测试。

3.1.1 TC200(通额定电流)+DH1000长期性测试

剔除由于互插导致的失效连接器外,有效结果如图4所示。其他厂家连接器与MC4互插后,接触电阻迅速增加,相同电流下,大的接触电阻所产生的温升会使连接器非金属件老化速度加快,在一些极端情况下会造成连接器熔毁。


 

图4 互插后的电阻增值

3.1.2 短时间大电流测试(3-5分钟、100A)

从图5可以看出:3分钟,互插的不同厂家连接器温度已达到160℃,功率损失为700多瓦且外壳已经出现变形特征;4分钟后,互插的连接器外壳开始冒烟,而内部温度最高也达到了200℃以上,功率损耗也持续增加;5分钟后,互插的连接器已开始冒浓烟,功率损耗已达到800瓦,这时候连接器已接近失火状态。与之形成鲜明对比的是MC4自身公母头插合后的测试结果:除了温度由初始的90℃升高到135℃及功率损失由69W升高到73W外,外观并无明显的变化。当然,这种状态也不会持续太长时间,因为毕竟是100A的极限通流测试。但是,该测试却从正面直观的反映出互插带来的潜在威胁。

3.2 整体工艺

表带触指的使用是一个大的概念,与我们上文提到过的参数息息相关。涉及到厂家信息保密因素无法在本文一一展开讨论,但是我们可以通过实验的手段来展现表带触指对产品性能的影响。

该实验采用的是某“类MC4”连接器。需特别指出的是,“类MC4”连接器使用的是形似表带触指的导电介质。测试项目虽采用IEC62852标准但试验条件更加严苛,例如TC200(通额定电流)之后又进行了TC400(通额定电流)的测试,而DH1000后又进行了DH2000的测试。每项测试后都有相关的测试项目对产品整体进行验证,但由于导电介质与光伏连接器的接触电阻息息相关,因此本文将只讨论该连接器实验后接触电阻的变化。

本次实验采用样品共10套。TC400+DH2000结束后,只有三套样品表现符合标准要求,另外四套接触电阻均有明显的增大,其中变化最大的已经超过40mΩ,超过其最大接触电阻的80倍,更是目前MC4最大接触电阻的160倍,另外三套则是烧熔或变形状态,其烧熔点和变形点均为连接器中间导电介质所在位置,见图6。

测试后,如果仅从接触电阻的变化来看,该连接器失效比率达70%。如果该连接器应用于光伏电站中,那么最大的风险点就是中间连接部位,即导电介质和金属部件接触的部位。

4. 结语

连接器是能量的传输者和电力的搬运工。能量在传输时,必然会有损耗。对于连接器厂商来说,最大的考验就是如何以最小的能量损耗实现安全和稳定地传输。积50余年应用经验的史陶比尔表带触指技术,能够保障连接器具备长期稳定的低接触电阻。

【相约SNEC 2019:E1-555】

关于史陶比尔

从小型连接器到大功率连接器,史陶比尔电连接器广泛应用于替代能源、输配电、自动化、铁路、测试测量和电动交通等诸多行业。在光伏领域,史陶比尔光伏连接器是全球市场领导者,迄今已成功连接超240GW光伏系统。史陶比尔所有电连接器都是基于MULTILAM核心专利技术。


索比光伏网 https://news.solarbe.com/201906/14/308854.html

责任编辑:hanzhe
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
科学家研发自修复封装材料,阻铅超99%!为钙钛矿光伏技术的可靠性提供了关键解决方案来源:钙钛矿材料和器件 发布时间:2025-12-05 14:36:42

钙钛矿太阳能电池凭借其高光电转换效率与低制造成本,正成为下一代光伏技术商业化进程中的领跑者。因此,亟需开发一种能够快速响应损伤、具备高效自修复能力与主动铅捕获功能的新型封装材料,这已成为推动钙钛矿光伏技术实现安全、可持续商业化所必须突破的关键瓶颈。

浙江大学薛晶晶Nat Rev Chem:有机A位阳离子在金属卤化物钙钛矿光伏中的应用来源:知光谷 发布时间:2025-12-01 15:56:27

有机A位阳离子丰富的选择性和可设计性,为通过化学相互作用调控金属卤化物钙钛矿的多种性能提供了巨大机遇。结构-性能关联机制:系统阐明了A位阳离子的分子结构如何影响其与钙钛矿骨架的相互作用,并最终决定器件的效率与长期稳定性,为理性分子设计提供了理论基础。低维/3D协同策略:通过引入大尺寸有机阳离子构建2D/3D钙钛矿异质结构,在保持高效率的同时,显著提升了器件的环境稳定性与离子迁移抑制能力。

前沿光伏技术之中间带太阳电池:让低能光子“无处可逃”的超能武器来源:网络 发布时间:2025-11-24 11:09:28

以晶体硅为代表的第一代太阳电池,其效率已接近理论极限,提效空间有限;第二代太阳电池(CdTe、CIGS、非晶/微晶硅等)虽然生产成本较低,但效率偏低,且其中部分材料存在资源稀缺或环境毒性等问题,难以支撑大规模可持续应用。在此背景下,第三代太阳电池应运而生,包括有机光伏、钙钛矿电池、多结叠层、中间带、热载流子、光子/激子倍增以及热光伏等。这些新技术的共同目标是在不增加复杂封装与阳光跟踪系统的前提下,不断推动单片电池转换效率的提升。

晶澳光墅 | 在-30°C的严寒中,这台机器如何助力东南大学打造零碳建筑?来源:晶澳智慧能源 发布时间:2025-11-13 14:51:46

在河北康保的严寒之地,一座名为SolarArk5.0的曲面零能耗建筑正悄然崛起。极端环境下的硬核表现-30°C低温,依旧稳定运行康保的冬季,低温、大风是常态。然而,在整个建造期内,这套光储系统始终稳定输出,无惧极端气候。它让清洁能源的应用,从建筑“建成后”的运营,前置到“建造中”的每一个环节,真正实现了从施工到使用的全周期零碳。在零碳建筑的道路上,科技不仅是工具,更是伙伴。

美国陆军在可部署微电网中测试Swift Solar钙钛矿叠层技术来源:钙钛矿材料和器件 发布时间:2025-10-29 13:59:23

作为最近网络安全演示的一部分,美国SwiftSolar制造的钙钛矿叠层电池被用于美国国防部混合微电网。模块化微电网专为快速设置和重新定位而设计,并内置于集装箱中。它们可部署在灾难响应、军事行动或远程发电应用中。可部署的微电网利用多种能量输入,包括柴油发电机和电池储能系统以及钙钛矿太阳能电池。美国陆军作战能源专家和亚马逊网络服务等私营部门合作伙伴参加了演示。

前沿光伏技术之循环器:第三代太阳电池效率革命的 “隐形推手”来源:投稿 发布时间:2025-10-29 10:45:26

基于拓宽光谱响应的第三代太阳电池的诞生,正是为了突破这一困境。然而太阳电池属于交互系统,这意味着太阳电池吸收阳光的同时,必然会向太阳方向发射热辐射,造成不可避免的能量损失。在第三代太阳电池的应用场景中,引入循环器技术,将其特性得到了充分发挥。

武汉大学闵杰教授团队Joule综述:从非富勒烯受体分子设计到产业应用的有机光伏技术发展蓝图来源:知光谷 发布时间:2025-10-29 08:59:58

这种综合评估理念正在逐步获得学术界与产业界的广泛认同,为推动技术的实用化发展提供了重要指导。研究表明,非富勒烯受体材料的降解主要源于光氧化和分子异构化等机制。然而,近期的研究表明形貌演变更多地受动力学机制支配。

芬兰经济事务部能源司司长:“中芬合作是技术与产业的完美互补”来源:国家能源局 发布时间:2025-10-28 10:15:42

10月23日,在2025国际能源变革论坛上,中能传媒记者独家专访芬兰经济事务和就业部能源司司长里库·胡图宁,探寻芬兰能源转型的深层逻辑与中芬合作的新空间。结合中国庞大的工业体量与明确的清洁能源升级规划,芬兰的技术专长与中国的产业优势形成强烈互补,双方合作前景十分广阔。事实上,中芬两国均处于全球能源转型的前沿阵营。芬兰虽国土面积不大,但在能源领域的知识密度极高。

专访芬兰经济事务部能源司司长:“中芬合作是技术与产业的完美互补”来源:中国电力报 发布时间:2025-10-24 15:16:17

▲芬兰经济事务和就业部能源司司长里库·胡图宁10月23日,在2025国际能源变革论坛上,中能传媒记者独家专访芬兰经济事务和就业部能源司司长里库·胡图宁,探寻芬兰能源转型的深层逻辑与中芬合作的新空间。结合中国庞大的工业体量与明确的清洁能源升级规划,芬兰的技术专长与中国的产业优势形成强烈互补,双方合作前景十分广阔。事实上,中芬两国均处于全球能源转型的前沿阵营。芬兰虽国土面积不大,但在能源领域的知识密度极高。

上海交通大学许振明NC:人为矿物循环在解决全球光伏发展中资源供应和废物管理的双重挑战中的作用来源:先进光伏 发布时间:2025-10-20 10:13:09

论文概览人为矿物循环为光伏发展中的资源供应和废弃物管理双重挑战提供了协同解决方案。研究首次证实光伏回收在资源安全、经济效益与碳中和目标间的协同效应,为政策制定提供科学依据。这些结果表明,在积极脱碳的情景下,循环供应链在抵消原生需求方面的重要性日益凸显。这些研究发现不仅为全球光伏产业的可持续发展提供了重要洞见,也为推动全球能源公平转型提供了科学依据。

香港大学AFM:Y型受体中电荷转移激子扩散的定量理解及其在高效有机太阳能电池中的应用来源:知光谷 发布时间:2025-10-20 09:59:55

激子扩散长度是有机太阳能电池的关键参数。近期研究表明,Y型NFA中会产生分子间电荷转移激子,但ICT激子形成对LD的影响尚未明确讨论。本文香港大学PhilipC.Y.Chow等人指出,由于皮秒时间尺度上ICT激子形成导致光学带隙附近光谱演化,忽略此现象可能导致瞬态吸收数据分析中显著高估Y型NFA薄膜的LD。此外,在使用激子-激子湮灭模型进行数值拟合时,采用ICT激子的本征弛豫寿命对于可靠提取扩散系数和LD至关重要。