科学家发明弱光高效太阳能电池(图)

来源:网络发布时间:2019-04-10 13:53:48

导读: 麻省理工学院的化学工程师Michael Strano表示,他们从树叶的光合作用和自我修复原理中得到了启发,不再把研究的重点放在如何提高太阳能的耐用性上,决定开始尝试设计一个损坏部分可自我替换的系统。

 

 

据国外媒体报道,麻省理工学院的科学家们近日借鉴树叶光合作用发明了一种有着自我修护作用的太阳能电池。同时,这种电池可以将光像分子一样紧紧聚齐在一起,产生双倍于普通电池存储的电量。

据悉,光合作用是通过将光能转化为电能,继而将电能转化为活跃的化学能,最终将其转化为稳定的化学能的过程,这一过程也就为利用光合作用发电提供了基础。由于光合作用能够相对高效地将太阳能转化成电能,而且在转化的过程中仅消耗水,对环境没有丝毫的污染,所以在其它自然能源日益匮乏,环境污染严重的今天,利用光合作用解决人类的能源需求问题已经成为科学家研究的热点问题。光合作用进行的场所是叶绿体。高等植物叶绿体的直径为4~10μm,厚度在1~2μm之间。在叶绿体中,有几个到几十个基粒,每个基粒都由囊状的结构垛叠而成,在囊状结构的薄膜上,有进行光合作用的色素。光合作用包括两个主要步骤:一是需要光参与的、在叶绿体的囊状结构上进行的光反应;二是不需要光参与的、在有关酶的催化下在叶绿体基质内进行的暗反应。光反应又分为两个步骤:原初反应,将光能转化成电能,分解水并释放氧气;电子传递和光合磷酸化,将电能转化为活跃的化学能。暗反应是以植物体内的C5化合物(1,5-二磷酸核酮糖)和CO2为原料,利用光反应产生的活跃的化学能,形成储存能量的葡萄糖。虽然太阳光对树叶的光合作用起着至关重要的作用,但强烈的紫外线也会利用粗糙的氧分子和其它破坏性分子来损坏树叶,这时树叶就需要不断的建立新的光合作用反应中心来换掉被破坏的分子。

太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置,太阳光照在半导体p-n结上,形成新的空穴-电子对,在p-n结电场的作用下,空穴由n区流向p区,电子由p区流向n区,接通电路后就形成电流。这就是光电效应太阳能电池的工作原理。 太阳能电池是一种由于光生伏特效应而将太阳光能直接转化为电能的器件,是一个半导体光电二极管,当太阳光照到光电二极管上时,光电二极管就会把太阳的光能变成电能,产生电流。当许多个电池串联或并联起来就可以成为有比较大的输出功率的太阳能电池方阵了。太阳能电池是一种大有前途的新型电源,具有永久性、清洁性和灵活性三大优点.太阳能电池寿命长,只要太阳存在,太阳能电池就可以一次投资而长期使用;与火电、核电相比,太阳能电池不会引起环境污染;太阳能电池可以大中小并举,大到百万千瓦的中型电站,小到只供一户用的太阳能电池组,这是其它电源无法比拟的。

麻省理工学院的化学工程师迈克尔•斯特拉诺(Michael Strano)表示,他们从树叶的光合作用和自我修复原理中得到了启发,不再把研究的重点放在如何提高太阳能的耐用性上,决定开始尝试设计一个损坏部分可自我替换的系统。

据了解,科学家们利用一个紫色细菌的光合作用反应中心来进行试验,他们在这个结构中加入一些蛋白质和脂肪,为了可以发电还创造性的加入了碳纳米管。科学家们为了只让小分子通过这些材料,他们还将这些材料都放入了一个装满水的透析袋中。同时,科学家还在这些材料中添加了一种表面活性剂,这些材料由于自身的化学特性会自发的集合成一团,而且它们还会根据产生最大电流量的样式自动结合。卷绕在脂肪上的支架蛋白在光合作用反应中心的帮助下会形成一些小圆盘,这些小圆盘会自动沿着碳纳米管排列,继而从光合作用中心产生的电流会从这些小圆盘中的小孔中穿过。当研究小组将这堆材料中的表面活性剂过滤时,他们捕捉到了由太阳光产生的一丝电流。这些复合材料虽然最终会失效,但它们同时也很容易就能够 “复活”。研究人员为了使混合材料工作的效率更高,持续的时间更长久,每周都会进行四次替换工作-即将这些混合在一起的材料拆开,然后再在光合作用反应中心中重新注入新的材料,这样就可实现太阳能电池的自我修复工作。

研究人员表示,虽然这种太阳能电池还不能与现在广泛使用的硅元素太阳能电池媲美,但硅元素太阳能电池需要经过几十年的研究和发展才能提高发电效率,而相同的投资如果投放在这项新式太阳能电池上,不仅在短时间内会完成高效的发电,而且在弱光条件都可工作。科学家近一步表示,他们将来会尝试从植物中提取材料来应用到这个太阳能电池中,希望这个太阳能电池早日成为真正的绿色电池。

据纳米复合材料的专家杰米•格伦林(Jaime Grunlan)表示,这个技术是将大自然的“工作原理”人工化,这个研究是科学界的一项开创性研究。

索比光伏网 https://news.solarbe.com/201904/10/305158.html

责任编辑:yangran
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
KHP钝化埋底界面实现高效稳定钙钛矿太阳能电池来源:钙钛矿材料和器件 发布时间:2025-12-05 14:43:00

近日,中国科学院上海高等研究院光源科学中心研究人员成功将邻苯二甲酸氢钾作为多功能添加剂引入SnO2电子传输层,以同步改变ETL性质和SnO2/钙钛矿埋底界面。此外,KHP在ETL中均匀分布,并在热退火过程中逐渐扩散至埋底界面和钙钛矿层,进一步与未配位的Pb离子配位,降低钙钛矿的表面及体相缺陷密度,缓解薄膜内部应力。

无机钙钛矿太阳能电池以950小时运行达到迄今为止的最高效率来源:钙钛矿材料和器件 发布时间:2025-12-05 14:38:39

无机钙钛矿太阳能电池实现了超过21%的创纪录效率。团队成功解决了长期存在的难题,发明了一种在完全无机钙钛矿太阳能电池上制造耐用保护层的方法。解决退化问题限制钙钛矿太阳能电池采用的主要障碍是快速降解,暴露于湿度、温度或压力等波动的大气条件下,会导致钙钛矿材料在效率和材料性能上迅速下降。

郑州大学张懿强AM:双模式分子调控钙钛矿结晶,实现高效稳定的FAPbI₃太阳能电池与组件来源:知光谷 发布时间:2025-12-04 10:34:21

本研究引入二苯基碳酸酯作为双功能分子调控剂,可同时调控FAPbI薄膜的成核与生长过程。这种协同调控机制获得了均匀、大晶粒的钙钛矿薄膜,并显著降低了缺陷密度。因此,基于DPC的钙钛矿太阳能电池实现了26.61%的冠军效率,优于对照组器件。

周二军&于润楠&谭占鳌Nat Commun:通过晶界缓冲调控拉伸应变实现柔性钙钛矿太阳能电池的高效稳定来源:知光谷 发布时间:2025-12-03 09:24:30

本研究嘉兴学院周二军、北京化工大学于润楠和谭占鳌等人通过引入金属螯合物,调控钙钛矿薄膜的纳米力学性能。该策略不仅聚焦于薄膜的纳米力学特性,还揭示了其物理性能与机械柔韧性之间的内在联系。纳米力学-光电性能协同调控:系统阐明了金属螯合物通过静电作用与氢键调控薄膜模量与应变,同步提升载流子寿命与器件稳定性,为柔性光电器件设计提供新思路。

成都理工大学彭强EES: 介电分子桥使26.60%的高效耐用倒置钙钛矿太阳能电池具有高反向击穿电压来源:先进光伏 发布时间:2025-12-02 14:16:40

实验结果表明,F-CPP处理后的钙钛矿薄膜介电常数提升约2倍,器件瞬态反向击穿电压达-6.6V,为银基钙钛矿太阳能电池中的最高值之一。结论展望本研究通过引入F-CPP介电分子桥,成功实现了钙钛矿太阳能电池效率与反向击穿电压的双重突破,首次系统解决了钙钛矿电池在实际应用中的反向偏压稳定性难题。

高效率且稳定的柔性钙钛矿-晶硅叠层太阳能电池来源:半导体学报 发布时间:2025-12-02 09:50:38

钙钛矿-晶硅叠层太阳能电池兼具高效率与低成本的优势,具有巨大的发展潜力。近期,《自然》杂志同时发表的两项柔性钙钛矿-晶硅叠层太阳能电池的研究,报道了该方向效率及稳定性的重大进展。图1.使用双缓冲层氧化锡的柔性钙钛矿/硅叠层太阳能电池,性能分析及各项参数对比。最终研制出的柔性钙钛矿-晶硅叠层电池效率高达33.6%,开路电压达到2.015V。

王开&马静&刘生忠AEL:带隙与晶体质量的协同提升实现高效稳定钙钛矿/硅叠层太阳能电池来源:知光谷 发布时间:2025-11-28 10:23:55

宽带隙钙钛矿材料对叠层太阳能电池至关重要,但富Br软晶格可能引发严重的离子聚集与迁移,显著损害器件效率与稳定性。由此,晶体质量提升的钙钛矿薄膜表现出更高的离子迁移能垒和增强的界面载流子提取能力。这些协同效应使单结钙钛矿太阳能电池效率高达23.24%,单片钙钛矿/硅叠层电池效率达30.16%,并在热、湿、光应力下展现出优异的稳定性。

李忠安&李楠AM:f-PSCs 效率25.11%!极性醚链段调控自组装单分子层实现高效且机械稳健的柔性钙钛矿太阳能电池来源:知光谷 发布时间:2025-11-26 11:48:28

柔性钙钛矿太阳能电池是下一代便携式、可穿戴及建筑一体化光伏器件的理想候选者。这一双重功能促使EtOPACz在柔性基底上组装形成致密、均匀的分子层,从而增强界面附着力、改善钙钛矿薄膜质量并促进空穴提取。因此,采用EtOPACzSAM的f-PSCs实现了25.11%的卓越能量转换效率,为目前报道的f-PSCs中最高值之一。这些结果表明,极性醚链段工程为同时优化高性能f-PSCs的界面接触、电荷传输和机械耐久性提供了一条强有力的策略。

AEM:用于非富勒烯有机太阳能电池的两亲性聚合物共网络:调控分子堆叠实现高效下转换来源:知光谷 发布时间:2025-11-25 14:41:54

两亲性聚合物共网络由纳米尺度相分离的亲水和疏水域组成,近年来在被动光子学应用中引起关注。掠入射广角X射线散射表明,发光团的分子平面性和二面角通过范德华相互作用影响BHJ的堆叠,进而影响电荷传输。研究亮点:创新性引入APCNs作为多功能支架:利用其纳米相分离结构,成功将亲水性下转换发光团与疏水性PM6:Y6体异质结在空间上隔离,解决了材料不相容和能级不匹配问题。

段玉伟&彭强AM:原位自交联聚合与开环加成反应精密构建内部封装层,实现高效环保的钙钛矿太阳能电池来源:知光谷 发布时间:2025-11-25 14:32:26

在钙钛矿顶部表面覆盖内部封装层对于提升钙钛矿质量、实现高性能钙钛矿太阳能电池至关重要。本文成都理工大学段玉伟和彭强等人通过硅氧烷基团的自交联聚合和环氧基团的开环加成反应,原位合成了一种新型内部封装层,以克服长期以来被忽视的IEL缺陷,例如消除副产物的不利影响,以及在提高钙钛矿质量和最小化Pb泄漏之间取得平衡。

科学家发现钙钛矿太阳能电池“融化”原因来源:钙钛矿材料和器件 发布时间:2025-11-24 09:08:01

科学家们揭示了微观缺陷如何引发钙钛矿太阳能电池的灾难性故障。由科罗拉多大学博尔德分校的RASEI研究员MikeMcGehee领导,并与国家可再生能源实验室的科学家合作的一项研究,在《Joule》期刊上发表了新的发现,这些发现可能有助于克服在规模化生产下一代钙钛矿太阳能电池时面临的一个主要挑战。McGehee课题组在创造和优化钙钛矿太阳能电池方面有着长期的成功经验。这项工作代表了钙钛矿太阳能电池商业化征程中的关键一步。