当前位置:首页 > 光伏资讯 > 光伏科技 > 正文

基于不同标准的光伏矩阵静态验算

来源:索比光伏网发布时间:2018-07-23 16:41:54作者:葛妙兰

由于光伏系统工作寿命至少二十年以上,所以必须保证光伏矩阵结构的安全性。光伏矩阵的安全性通常需要基于相关标准进行静态验算,即作用于系统上的荷载与结构材料的许用应力之间进行比较。作用于系统上的荷载包括固定荷载(系统自重)、风荷载和雪荷载(注:对于地震多发地带还要考虑地震荷载);结构材料的许用应力:即结构材料的极限应力除以某个系数得出的应力值,不同材料有不同的屈服强度和极限拉伸强度,这可以查表得到相关数据。需要说明的是:系统中所有受到荷载作用的构件,不管是支撑、压缩、剪切,都要进行验算,以确保整个系统的安全性。

举例说明:同样的光伏矩阵设计,安装在不同的地区。当组合荷载(自重+风荷载+雪荷载)超过结构材料许用应力时,系统肯定遭到毁坏;反之,系统则安全。试想一下:两个不同的风区地点,光伏矩阵安装在少风区可能完好无损,安装在暴风区里可能严重破坏。还有一种假设:同样的光伏矩阵设计,采用不同的结构材料,安装在相同的地区,比如:铝合金结构和钢结构。凭着常识,我们也知道钢结构比铝合金结构更牢固。

那么怎样精准地验算光伏矩阵系统呢?既要保证系统的安全性,又要避免设计过剩。我们引入静态验算的概念,这涉及到三个方面:荷载标准、设计标准和材料标准。不同地区对应不同标准,不同标准下进行的静态验算也略有不同,包括不同的荷载推算公式,不同的荷载组合工况,不同的力学模型和不同的判定方法。当然,荷载确定后,力学模型确定后,力学分析和力学公式是相同的。

举例说明:

首先,构建一个光伏地面矩阵模型,确认系统模型的输入项:系统高度H、系统重量Fg(支架+光伏电池板)、系统面积As、系统角度θ、轨道跨距L等。例如:H=4m,Fg=2100N,As=12.79m2 ,θ=30˚,L=360cm

然后,确定安装地点的各种基本参数:地图基准风速Vo、地图基准雪压Sk,(注:这些参数可以通过该地的风区图和雪区图确认,这是由当地气象部门多年观测采集的数据),还有该地区的粗糙等级等参数。例如:Vo=34m/s,Sk=4kN/m2 ,地面粗糙等级III。

接着,确定分析项目和计算方法,一般分析项目包括轨道、横梁、支柱等受到荷载作用的构件。计算方法则用到力学知识,简单介绍如下:

因为轨道上面均匀排布光伏电池板,所以通常轨道看作受到均布荷载的简支梁。根据施加在上面的铅锤方向和水平方向的荷载计算出轨道的抗弯应力。一般采用公式M=qL2/8求得轨道的弯曲力矩(注:q指轨道上面的均布荷载,L指轨道间距),然后采用公式б=M/Z求得弯曲应力(注:M指轨道的弯曲力矩,Z指轨道的截面系数);采用公式Z=I/e求得截面系数Z(注:I指构件的截面惯性模量,e指截面尺寸 ,这些数据跟构件的截面设计有关,查询设计图纸。)

横梁通常以支柱位置为支撑点,支撑上面的轨道和光伏电池板,这可以作为集中荷载进行处理,计算出横梁最大跨距内的抗弯应力及压缩应力,具体力学分析及力学公式不再详述;同理,支撑柱需要在铅锤方向进行压缩分析,计算出最大压缩应力;在水平方向进行悬臂梁的强度分析,计算出最大抗弯应力。

最后查询材料标准,确定材料的屈服强度(N/cm2)和极限拉伸强度(N/cm2),以及在长期条件下和短期条件下的许用应力。

下面重点讲解基于不同地区标准的静态计算差异,以欧洲标准和亚洲日本标准为例进行说明。

欧洲标准(包括但不限于以下标准):

EURO CODE 0 基本结构设计标准

EURO CODE 1 荷载标准

EURO CODE 9 铝合金结构设计标准

日本标准(包括但不限于以下标准):

JIS C 8955:2011 光伏矩阵支架设计标准

JIS C 8956:2011 家用光伏矩阵(屋顶式)的结构设计及施工方法

JIS H 4100 铝和铝合金挤压型材标准

1. 荷载推算公式不同

1.1欧洲标准

风荷载:

第一步,根据已知的地图基准风速Vo,利用公式求得基本风速Vb。

Vb=Cdir×Cseason×Vo

其中,

Cdir为风向系数,推荐值为1.0;Cseason为季节系数,推荐值为1.0;

本案例中:Vo=34m/s 求得Vb=34m/s

第二步,根据求出的基本风速Vb,利用公式求得平均风速Vm(z)

Vm(z)=Cr(z)×Co(z)×Vb

其中,

Cr(z) 指粗糙系数,通过公式求得;

Co(z) 指地理系数,推荐值为1.0

粗糙系数Cr(z)的公式有两种情况:

Cr(z)=Kr×In(Z/Z0) 当Zmin≤Z≤Zmax

Cr(z)=Cr(Zmin) 当Z≤Zmin

其中,

Kr指地形等级系数,利用公式求得;

Z指光伏矩阵系统高度;

Z0和Zmin指地形等级参数,可以查表(例如:地形等级III对应Z0=0.3m,Zmin=5m);

Zmax 推荐值为200 m;

地形系数Kr,公式如下:

Kr=0.19×(Z0/Z0,II)0.07

其中,

Z0指地形等级参数,可以查表。例如:地形等级III对应Z0=0.3m;

Z0,II 查表值为 0.05 m;

本案例中:地形等级III,查表得到Z0和Zmin数值(Z0=0.3m,Zmin=5m),系统高度为4m。

首先根据系统高度˂Zmin,求出地形等级系数kr,Kr=0.19×(Z0/Z0,II)0.07=0.19×(0.3/0.05)0.07

然后根据Kr,求出粗糙系数Cr(z),Cr(z)=Kr×In(Zmin/Z0)=Kr×In(5/0.3);最后根据Cr(z),求出平均风速Vm(z)=Cr(z)×Co(z)×Vb=Cr(z)×1×34;

第三步,根据求出的平均风速Vm(z),利用公式求得风速的基准风压qp;

qp=ρ×V2m(z)

其中,

ρ指空气密度,推荐取值1.25kg/m3

第四步,根据基准风压,利用公式求得风速的峰值风压qp(z);

qp(z)={1+7×lv(z)}×1/2× qp

其中,lv(z)指紊流强度,可以通过公式求得紊流强度lv(z)分两种情况:

lv(z)= 当Zmin≤Z≤Zmax

lv(z)=lv(zmin) 当Z≤Zmin

其中,

K1 指紊流系数,推荐值为1.0;

Co(z) 指地理系数,推荐值为1.0;

Z指光伏矩阵系统高度;

Z0和Zmin指地形等级参数,可以查表。例如:地形等级III对应Z0=0.3m,Zmin=5m;

Zmax 推荐值为200 m;

第五步,根据求出的风荷载的峰值速压qp(z),利用公式求出风压Wp

Wp=qp(z)×Cpe

其中,

Cpe指风力系数,可以通过风洞试验获取精确的风力系数,也可以通过查表获取粗略的风力系数。注:同一光伏矩阵,中间区域和两端区域的风力系数不同。

第六步,最后求得风荷载Fw= Wp×As

光伏行业最新动态,请关注索比光伏网微信公众号:GF-solarbe

投稿与新闻线索联系:010-68027865 刘小姐:news@solarbe.com

索比公众号
推荐新闻
同比下降18%!印度2023年风光装机量达12.9GW

同比下降18%!印度2023年风光装机量达12.9GW

根据调研机构JMK Research公司日前发布的一份研究报告,印度在2023年安装的光伏系统和风力发电设施总计装机容量为12.9GW,与去年相比下降了18%,这是印度可再生能源行业的一个令人关注的变化。该报告表示,在2023年1月至12月期间,光伏系统和风力发电在印度不断增长的可再生能源投资组合中做出了重大贡献。

光伏系统风力发电可再生能源
2024-02-06
英国制造商称其钙钛矿光伏组件发电效率高达25%

英国制造商称其钙钛矿光伏组件发电效率高达25%

据外媒报道,英国光伏电池制造商Oxford PV公司日前表示,该公司与德国弗劳恩霍夫光伏系统研究所(ISE)合作开发的钙钛矿光伏组件的转换效率高达25%。

光伏电池钙钛矿光伏组件光伏系统
2024-02-05
迈贝特助力天津高新云数据中心TPO屋顶项目并网发电

迈贝特助力天津高新云数据中心TPO屋顶项目并网发电

近期,由迈贝特提供支架的腾讯天津高新云数据中心光伏项目正式并网,该项目总装机量约为10.54MW,每年可为企业节省1200万度电,实现了绿色电能与数据中心结合的新型模式,推动企业绿色低碳转型。

迈贝特光伏项目光伏系统
2024-02-05
IEA:全球2023年可再生能源装机量近510GW

IEA:全球2023年可再生能源装机量近510GW

国际能源署(IEA)在最近发布的一份开创性的报告中表示,全球在2023年安装的可再生能源装机容量将近510GW,与前一年相比激增50%。这一增长主要是由全球安装的光伏系统装机容量快速增长推动的,占全球新增可再生能源装机容量的四分之三。中国经已成为全球可再生能源大国,2023年安装的光伏系统装机容量与2022年全球安装的光伏系统装机容量相当,而风力发电装机量同比飙升66%,其增长令人印象深刻。欧洲、美国和巴西也经历了可再生能源装机容量的创纪录高增长。

可再生能源光伏系统陆上风电
2024-02-04
返回索比光伏网首页 回到基于不同标准的光伏矩阵静态验算上方
关闭
关闭