目前,沙特国王大学(KSU)机械工程学教授HanyAl-Ansary正联合美国桑迪亚国家实验室(SandiaNationalLaboratories)在该国利雅得附近开展塔式光热发电粒子吸热器(PHR)的技术研究工作。
据了解,上述研究属于新型太阳能热发电技术,其工作温度可达到1000°C左右,几乎是目前熔盐塔式光热发电系统工作温度(565°C)的两倍,有望在提高系统工作效率的同时降低光热发电成本。
冷热罐均可安装在集热塔内部
与塔式熔盐光热电站中的储罐布置方式不同,采用粒子吸热器的光热电站的热罐和冷罐可以与换热器一起安装在集热塔的内部,这样可以减少泵的使用,从而降低相关成本。
在一座采用粒子吸热器的装机20MW的塔式光热电站中,集热塔高150米,直径约30米,储罐可垂直安装于集热塔内部,冷罐的位置大约在集热塔中部,在此情况下,只需将吸热颗粒从塔身中间泵到顶部对其进行加热。
同时,桑迪亚国家实验室研究小组展开了一项创新测试,他们通过设置一种人字形障碍物,减缓了沙粒的下降速率。如果没有障碍物的话,即使只有1米高的落差,沙子的下降速度也会增至5m/S或6m/S。
在集热过程中,受阻的粒子流在吸热器的各个集热面都会维持密集的“粒子帘”状态,并吸收太阳辐射。
图:粒子吸热器技术原理(来源:SUNSHOT)
Al-Ansary团队的研究人员发现,由于人字形障碍物的设置,在实验室状态下,粒子温度达到了约1000°C,而且没有出现沙粒结块现象,甚至在小试装置中也达到了700°C以上的温度。
图:设置人字形障碍物减缓粒子下降速率(来源:桑迪亚国家实验室)
沙子或为最佳粒子选择
配置储热系统的塔式光热电站顺应未来低碳发展的需要,并能实现24小时发电。粒子吸热器技术有可能降低塔式光热发电的成本,因为它可以将现有565°C的熔盐工质运行温度提高近一倍。
高温意味着高效。粒子吸热器能够与高效率的超临界二氧化碳和吸气式布雷顿动力循环相匹配,使太阳能在高温热化学过程中取代化石燃料,比如满足在800°C的温度下分解水以提取氢气或在1300℃下的喷气燃料中制造碳中性太阳能燃料。