如何处理太阳能跟踪系统跟踪误差的问题

来源:贤集网发布时间:2017-08-19 23:59:59
 编者按:槽式太阳能跟踪系统的跟踪误差影响集热器的运行效率,并且跟踪误差直接决定了太阳跟踪控制系统是否满足工程应用。跟踪误差主要来源于跟踪控制系统误差、机械部分传动误差等,机械部分传动误差可以通过跟踪控制方式加以修正,而对采用视日运动轨迹进行太阳跟踪的控制系统,其控制系统误差主要是太阳位置的计算误差。

机械部分转动误差主要包含角度传感器的测量变送误差和传动机构的运动误差。本系统的角度传感器选用的是绝对值旋转编码器,该编码器输出12位格雷码,旋转一圈的分辨角为360°/4096=0.088°,对于本系统聚光器在0~180°范围内运行,测量变送误差最大为0.044°。驱动机构的传动误差主要取决于驱动机构的实现形式,太阳跟踪的传动机构可以采用连续跟踪和间歇跟踪两种基本方法。

传动机构的实现形式不同,跟踪控制策略需要作相应调整以提高跟踪精度。采用间歇跟踪方法连续跟踪方法聚光器的跟踪角按照太阳位置变化规律随时间连续调节以跟随太阳运行轨迹的变化的控制方法,跟踪系统的机械转动部分需要设计非常大的减速比。此外,连续跟踪意味着跟踪机构在不间断的运动,将消耗大量的电能,违背了太阳能利用的目的。

系统采用的间歇跟踪方法,即每隔一段时间间隔后,运动轴快速调整一次跟踪角,使聚光器的转角与其由于停顿导致落后于太阳运行的角度相等。在运行间隔时间以外,聚光器的驱动机构固定不工作。采用间歇跟踪方法,不仅可以简化系统控制,避免庞大的减速系统,而且可以减少液压机构的动作频率,增加系统的运行寿命,降低跟踪运动系统本身的能耗。

但该方法不可避免的要牺牲系统的跟踪精度。跟踪程序的间隔时间直接决定了间歇跟踪方法的跟踪误差,本系统设计的间隔时间为1min,按前面分析冬至日正午时刻的聚光器运行速率为全年最大峰值,为0.398°/min,则该方法最大间隔误差既为为0.398°。槽式太阳能跟踪系统的另外一个误差是聚光器的跟踪角度的计算误差,采用前述视日运动轨迹数学模型计算出的太阳高度角和方位角直接决定了太阳跟踪角的精度,SPA算法具有非常高的计算精度。

本系统PLC计算出的太阳跟踪角、聚光器测量角度和采用SPA算法计算的角度对比曲线。从图中可以直观地看出聚光器测量角度变化趋势与设计的跟踪策略是一致的。SPA算法计算的角度和太阳跟踪角输出的最大偏差为0.12°,而SPA算法的1000年的计算误差在0.0003°以内,所以本系统的视日轨迹的计算误差可控制在0.13°以内。本系统的角度传感器的采样时间间隔为5s,所以实际跟踪曲线角位变化值在时间点上并不准确,在某些点上存在有一定的时间延迟,但跟踪曲线总体上体现了间歇式跟踪的规律。从数据分析来看,控制器的角度输出和聚光器测量角度的最大偏差在0.4°以内,聚光器的测量角度和SPA计算角度误差在0.5°以内,说明采用程序采用1min的运行间隔时间是合理的。


索比光伏网 https://news.solarbe.com/201708/20/134533.html
责任编辑:solar_robot
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
伊利诺伊州签署清洁能源法案,将推动太阳能光伏、电池储能和VPP的投资来源:SOLARZOOM光储亿家 发布时间:2026-01-15 16:20:00

伊利诺伊州州长JB·普利茨克已签署一项清洁能源法案,将促进该州太阳能光伏和储能投资,包括其他方面。

华东师范大学方俊锋最新Nature Communications:一种不含氟化锡、高效且耐用的锡铅钙钛矿太阳能电池来源:钙钛矿太阳能电池 发布时间:2026-01-14 08:37:34

2026年1月12日华东师范大学Wenxiao Zhang&方俊锋&林雪平大学高峰于Nature Communication刊发一种不含氟化锡、高效且耐用的锡铅钙钛矿太阳能电池的研究成果,开发了一种策略,将铅粉作为前驱体,并进行PbF₂后处理,分别替代SnF₂在成膜和表面缺陷钝化中的作用。Pb²⁺中的d电子极化增强了其与F⁻的结合,使其对钙钛矿的反应惰性。在本研究中,不含SnF₂的器件效率从16.43%提高到24.07%。在最大功率点下,85°C 运行 550 小时后,电池仍能保持其初始效率的60%。

从化学到太阳能电池:材料创新在钙钛矿光伏革命中的核心作用来源:钙钛矿材料和器件 发布时间:2026-01-07 10:33:54

钙钛矿太阳能电池已经成为光伏领域的一项变革性技术。自2009年问世以来,因其卓越的效率、低成本的加工工艺和可调谐的光电特性,十年内已成为下一代光伏技术的主要候选者。然而,长期稳定性、铅毒性和工业可扩展性方面的挑战仍然是其大规模商业化的主要障碍。本文探讨了材料创新在克服这些障碍中的核心作用,重点关注成分工程、分子添加剂与钝化、界面化学以及二维/准二维钙钛矿系统的进展。特别关注了电荷传输架构的演变和新兴的商业前景。我们还强调了从追求性能的研究转向注重耐用性和可制造性策略的重要性。文章最后对未来钙钛矿太阳能电池的发展方向提出了建议,包括标准化测试、预测性材料设计和环境友好型制造的需求。

美媒:犹他州领导人正在密切关注太阳能开发工作,目标是将该州的能源供应增加一倍来源:SOLARZOOM光储一家 发布时间:2025-12-26 16:01:03

Operation Gigawatt:长臂行动:犹他州州长斯宾塞·考克斯去年宣布,该州将利用“上述任何一种”方式在未来十年内将能源产量翻倍。

苏大袁建宇团队AM: 倒置钙钛矿太阳能电池实现 26.11% 的冠军效率!来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:15:02

效率:DCA-1F共SAMs器件表现最优,冠军PCE26.11%,开路电压1.179V,短路电流密度25.89mA/cm,填充因子85.49%;DCA-0F、DCA-2F共SAMs器件PCE分别为25.21%、25.05%,均高于纯MeO-2PACz对照组。稳定性:30-50%湿度环境下储存1000小时,DCA-1F共SAMs器件保持90%初始PCE;1太阳光照下最大功率点跟踪1000小时,仍维持~90%效率,而纯MeO-2PACz器件500小时后效率衰减超50%。DCA分子与MeO-2PACz在溶液状态下自聚集行为的示意图。近期报道的基于共自组装单分子层策略的高效钙钛矿太阳能电池性能汇总。

马斯克:计划每年部署100GW的太阳能AI卫星来源:SOLARZOOM光储一家 发布时间:2025-12-23 11:31:57

12月15日,特斯拉CEO埃隆·马斯克在社交平台“X”公开发声,明确表达对地球小型核电反应堆的否定态度,直言相关建造“简直愚蠢至极”。与此同时,他再次力推其太空太阳能AI设想,称太阳作为“天空中巨大的免费核聚变反应堆”,足以满足整个太阳系能源需求,地球上的小型核聚变反应堆本质是经济浪费。

黄劲松AEM:理解钙钛矿太阳能电池中基于膦酸分子的空穴传输层来源:知光谷 发布时间:2025-12-23 09:59:38

自组装单分子层已成为钙钛矿太阳能电池中一类重要的界面材料,能够调控能级、提升电荷提取效率,并改善器件效率与稳定性。其中,基于膦酸的自组装单分子层因其可与透明导电氧化物形成共价键,作为超薄、透明且可调控的空穴传输层而备受关注。解决这些挑战是将SAMs推向商业化钙钛矿太阳能产品的关键。

AEM:环境条件对无反溶剂两步法FAPbI₃薄膜及太阳能电池性能的影响来源:知光谷 发布时间:2025-12-23 09:58:30

综上,该研究表明,在干燥气氛中制备活性层或在最终退火时引入适度湿度,可获得两步法FAPbI太阳能电池的最佳性能与稳定性。

紫色光/紫外光线诱导的卤化物钙钛矿太阳能电池钝化失效来源:钙钛矿材料和器件 发布时间:2025-12-22 13:50:34

胺基末端配体,无论是直接使用还是以二维钙钛矿的形式使用,都是钙钛矿钙化剂中的主要缺陷钝化剂,并且显著推动了各种钙钛矿太阳能电池达到最高效率。然而,即便是这些最先进的钙钛矿太阳能电池,在运行过程中仍会迅速降解,这引发了对钝化耐久性的担忧。总之,研究结果揭示了一种普遍机制,即紫色光/紫外光线会导致胺基端配体的去钝化,而这类配体是钙钛矿太阳能电池的主要缺陷钝化剂。

固态钙钛矿太阳能电池的发现与进展来源:钙钛矿材料和器件 发布时间:2025-12-22 13:39:11

2012年,我们首次报道了长期稳定的固态钙钛矿太阳能电池,开辟了一个新领域,并引发了认证功率转换效率超过27.3%,超越了单晶硅太阳能电池的效率。如今,随着钙钛矿/硅叠层器件效率接近35%,钙钛矿太阳能电池已成为满足2050年净零碳排放目标所需太瓦级需求的主要候选者。展望未来,钙钛矿太阳能电池已准备好进入市场,预计钙钛矿/硅叠层器件将首先出现,随后是高效单结器件。固态钙钛矿太阳能电池的发现钙钛矿是具有ABX3通式的化合物。

SusMat综述:环保锡基钙钛矿太阳能电池的开压和填充因子损失来源:钙钛矿太阳能电池之基石搭建 发布时间:2025-12-22 09:36:56

基于锡的卤化物钙钛矿太阳能电池是一种极具前景的无铅替代方案,具有适宜的带隙和强光吸收特性,但其器件性能受制于显著的开路电压和填充因子损失。尽管相关研究已取得一定进展,但由于氧化化学、缺陷物理及界面能学的耦合作用,锡基钙钛矿太阳能电池的开路电压与填充因子性能仍难以媲美铅基钙钛矿太阳能电池。

新闻排行榜
本周
本月