从单层和双层悬索结构的基本受力特点出发,分析柔性支架在光伏发电工程中的应用,指出对应的条件限制和不足之处,并说明预应力的建立是索桁架获得结构刚度和形状稳定性的必要措施。针对以抗风设计为主要内容的悬索式光伏电站设计,给出承重索与稳定索互换的结构对称布置思路,提出刚性支架与柔性索桁架相组合的设计方案和张拉办法。通过索结构非线性静力分析的一般迭代算法,结合Sap2000 有限元计算程序,分析在自重和风荷载作用下的位移结果,验证组合方案设计的合理性,为悬索结构在光伏电站中的设计应用提供一种新的思路,以供参考。
为了降低光伏电站成本或适应复杂的场地建设条件,在当前部分光伏电站项目的设计中,通常采用单层悬索结构( 见图1) 和索桁架结构形式( 见图2)。
1 单层悬索结构问题
单层索系在工程设计中通常应用于承受较大的结构重量时,例如应用于悬挂式单曲薄壳凹屋面时,当其重力作用相对于反向荷载( 如负风压力) 具有比较优势时,就可以克服反向荷载的卸载作用,并产生较大的张紧力,从而增强悬索维持形状稳定的能力。
值得注意的是,竖向荷载沿跨度均布与沿索长均布[1] 时,索的曲线方程是不同的,前者为抛物线形状,后者为悬链线形状。常规工程的垂跨比f/L 约在0.04~0.15 之间,对应误差Δz/f 在5%~10% 之间,因此,采用抛物线代替悬链线在位移计算上的误差通常是可以接受的。
图3 中,q 为均布荷载;H 为水平张力;L为跨度;f 为挠度;d 为两曲线所代表的位移在同一点上的差值。
从光伏系统性能来看,无张力索不符合平板( 面) 光伏阵列设计的基本原则;从结构力学性能来看,它是一种可变体系[2],在风荷载和非对称荷载作用下易产生较大的机构性位移,这对于组件,特别是无边框组件而言,是极为不利的。施加初始预应力可以削弱单层悬索在面外荷载作用下所产生的很强的几何非线性;但从抛物线曲线所对应的水平张力来看,当控制索的垂度在一定限值时,随着跨度的增加,水平张力呈2 次幂增长,所以,合入初始拉力后的锚固成本并不因为光伏自重较轻而可以被忽略,实际上,单层悬索支座的反力是很大的。
2 索桁架结构问题
与单层悬索不同的是,以受压撑杆或拉索系于承重索和相反曲率的稳定索之间,并采用不同组合方式所形成的双层悬索体系,常被称为索桁架[3] 结构,其在工程设计中多用于轻型屋面。这是由于该结构不必依靠增加结构重量的方式维持原始形状,而是可以采取施加预应力的办法提高体系刚度,使双层悬索共同抵抗外部荷载的作用。采用预应力索桁架方案是解决悬索结构刚度及形状稳定性的一个普遍且有效的途径。虽然这种结构简洁且具有优秀的空间跨越能力,但其同样也必须付出“代价”——即一方面需要用索单元中预应力的减少来换取受压并维持结构曲面的稳定性,另一方面需要获得足够强大的边界条件( 或锚固能力) 及合理可控的施工顺序。
图2 所采用的鱼腹形即抛物线形索桁架在平面内的计算简图可抽取为图4 所示的压杆与拉索组合结构。图4 中,P 为集中荷载或外部集中力;A、B、C、D 分别为支座点。当承集中荷载时,该结构是恰当的;但是光伏阵列作为均布荷载和整体非刚性面,需要构造从A 点到B 点的悬挂直索,如果支座处无法提供强大的边界条件用以施加水平张力,则上弦直索在压杆分割的区间内所发生的几何非线性仍不可避免,这说明光伏阵列的平整度并未得到彻底解决。除此之外,阵列的南向倾角对东西向跨越的索桁架平面外刚度提出一定程度的要求,而预应力张拉在无法投入过高施工成本的光伏项目中也存在不易操控的问题。