技术突破 多接合硅晶太阳能电池效率达30%!

来源:集邦新能源网发布时间:2016-11-11 09:01:54

硅晶太阳能电池是目前太阳能发电技术的主流,但以目前已大规模商业化的技术而言,其转换效率预期很难超过23%。业界与研究单位持续积极研发各种技术,以突破效率天花板;最新公开的技术证实,太阳能电池效率可突破30%。

德国Fraunhofer太阳能系统研究所(ISE)与奥地利公司EV Group(EVG)合作,成功以硅晶太阳能电池为基础,加上拥有两个电极的多接合太阳能电池技术,让太阳能电池的转换效率一举冲高到30.2%。

Fraunhofer ISE和EVG的研究员透过直接外延片接合(direct wafer bounding)工艺将微米级的三五族半导体材料转换为硅材;经电浆活化后,外延片表面的次电池(subcell)将呈现真空状接合,使三五族次电池表面的原子与硅原子紧密接合,形成以硅材为基础的次电池。

 

 

透过堆叠磷化铟镓(GaInP)、砷化镓(GaAs)、硅(Si)等三种次电池所构成的多接合电池,能吸收更广光谱的太阳光,转换效率也能大幅提升。Fraunhofer ISE和EVG成功使4平方公分面积的三五族半导体/硅材多接合电池之转换效率提高到30.2%,突破了硅晶太阳能电池的理论效率天花板29.4%,并由Fraunhofer实验室检证完成。

 

 

三五族半导体/硅材多接合太阳能电池的电流与电压变化曲线图。(来源:Fraunhofer)

目前,这类三五族半导体/硅材多接合电池的成本仍然高昂,三五族半导体磊晶工程和接合技术等都有成本降低空间。Fraunhofer ISE的研究人员表示会继续进行研究,以推动转换效率30%以上太阳能组件问世。

夏普类似技术,用于人造卫星和咖啡椅

同样以多接合技术来发展高效太阳能电池的,还有日商夏普(Sharp)。夏普今年5月公开与日本NEDO合作的研究成果,透过化合物三接合技术打造了转换效率达31.17%的太阳能光伏电池,为目前全球转换效率最高的技术。

夏普的化合物三接合电池层叠磷化铟镓、砷化镓以及砷化铟镓(InGaAs)等三层吸光构造,并以特殊的穿隧接合层与缓冲层穿插组合其中,使电池可吸收的光谱更广、吸光效率更高。

 

 

夏普的化合物三接合太阳能电池,转换效率纪录为 31.17% 。(来源:Sharp)

夏普于5月发表的31.17%效率纪录实现于986平方公分的大面积电池上;而在这之前,同样的技术曾在1.047平方公分的小面积电池上创造37.9%的效率技术。

过去,夏普将此技术应用于人造卫星上,但今年10月,夏普将其应用于咖啡椅上,并结合蓄电池和USB充电埠,打造出特别的太阳能充电椅,目前已设置在东京的三家Starbucks门市。


索比光伏网 https://news.solarbe.com/201611/11/104413.html
责任编辑:xiaoxue
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
合肥新站钙钛矿产业大会召开,全力打造“长三角钙钛矿光伏技术特色产业园”来源:钙钛矿工厂 发布时间:2025-12-29 09:47:39

12月26日下午,合肥新站高新区钙钛矿光伏产业创新发展会正式召开,高校专家、产业链企业金融机构、科创孵化平台代表齐聚新站共话钙钛矿光伏产业发展新机遇。

2025光伏创新图鉴 谁将主导新技术来源:索比光伏网 发布时间:2025-12-26 15:52:19

2025年,在技术创新的浪潮中,光伏电池组件企业聚焦TOPCon、BC、HJT等核心技术路线,持续刷新效率纪录、推进产业化落地,同时在组件技术与系统集成领域斩获颇丰,形成了多元化的创新格局。

西安交通大学马伟团队Angew:香豆素基挥发/非挥发性固体添加剂协同作用,助力有机太阳能电池效率突破20.3%!来源:先进光伏 发布时间:2025-12-22 16:27:12

针对这一挑战,湘潭大学、西安交通大学、西安科技大学等多个团队合作设计并合成了两种具有相似骨架的香豆素衍生物固体添加剂:挥发性C5与非挥性C6。结论展望本研究通过精准设计一对结构相似但挥发性迥异的香豆素衍生物添加剂,首次系统比较并揭示了挥发性与非挥发性固体添加剂在有机太阳能电池中的作用机制差异。

四川大学彭强团队NC:溶剂蒸汽扩散驱动多尺度预聚集策略,助力有机太阳能电池突破20.7%效率!来源:先进光伏 发布时间:2025-12-22 16:25:04

论文概览精确调控活性层形貌是提升有机太阳能电池效率的关键,但其复杂性使得实现可重复的最优结构极具挑战。针对此难题,四川大学彭强、徐晓鹏团队创新性地开发了一种溶剂蒸汽扩散策略。实现效率突破:将单结有机太阳能电池效率推升至20.7%以上,跻身世界最高效率行列。结论展望本研究成功开发并验证了一种基于溶剂蒸汽扩散的、用于精确调控非富勒烯受体多尺度预聚集的通用策略。

抑制PEDOT:PSS相分离以提升柔性全钙钛矿叠层太阳能电池效率来源:钙钛矿材料和器件 发布时间:2025-12-22 13:45:15

Empa、四川大学、国立清华大学、FluximAG、苏黎世联邦理工学院和斯洛伐克科学院的研究人员证明,超薄PEDOT:PSS中的垂直相分离会产生界面偶极,限制柔性钙钛矿叠层电池性能,而将曲拉通加入PEDOT:PSS可抑制这些偶极子并提升器件效率。柔性全钙钛矿叠层太阳能电池和微型模块。本研究不仅揭示了PEDOT:PSS中界面偶极子作为钙钛矿叠层中的隐藏损耗机制,还提供了一种可扩展的克服方法。

常州大学朱卫国Advanced Materials:通过挥发性形态导向器的双相调控使阱抑制有机太阳能电池效率达到20.6%来源:先进光伏 发布时间:2025-12-18 11:07:59

针对这一问题,常州大学朱卫国课题组提出了一种基于挥发性固体添加剂1,3-二溴-5-碘苯的双相协同调控策略。该研究以“Dual-PhaseRegulationviaaVolatileMorphologyDirectorEnablesTrap-SuppressedOrganicSolarCellswith20.6%Eciency”为题发表在顶级期刊AdvancedMaterials上。径向分布函数与FT-IR光谱进一步证实了DBI优先与PM6的给体骨架发生非共价相互作用。时间演化分析显示适量DBI可促进PM6预聚集并同时抑制Y6的过度聚集。IR-AFM形貌图直观证实,适量DBI诱导形成了清晰、互穿的双连续相分离结构,而过量添加剂则导致相边界模糊、形成孤立域。

瑞典Ionautics新一代HiPIMS设备HiPSTER 25落地瑞士Swiss PVD,携手赋能高性能薄膜沉积技术工业化,助力PVD行业工艺升级来源:投稿 发布时间:2025-12-17 19:07:33

近日,Ionautics公司再次官宣重要进展——其自主研发的新一代HiPIMS设备HiPSTER25,已在瑞士高端涂层领域知名企业SwissPVD完成全流程的安装调试,并顺利实现首次商业化运行。对Ionautics而言,HiPSTER25在SwissPVD的成功部署,是其在高端应用场景中的又一次验证,有助于获得更多工业级应用反馈,进一步推动产品迭代与性能优化。

Nat Commun:有机太阳能电池突破20%效率!稠环异构化调控非卤化有机太阳能电池的分子堆积与器件性能来源:知光谷 发布时间:2025-12-17 11:19:27

分子骨架几何结构的微小变化影响有机太阳能电池中的分子间相互作用与性能。本文香港理工大学罗正辉等人研究了三种异构小分子受体,以揭示不同稠环构型如何调控分子堆积、电子耦合和薄膜形成。原位光学测量显示,NaO1在成膜过程中促进快速且连续的结构演化,形成平滑的形貌和均匀的相分布。我们的研究结果凸显了稠环异构化如何决定有机太阳能电池中结构-堆积-性能之间的关系。

带有立体互补设计的钙钛矿-硅叠层太阳能电池效率达到32.3%来源:钙钛矿材料和器件 发布时间:2025-12-15 21:48:44

中国研究人员开发了采用立体互补界面设计的钙钛矿-硅叠层太阳能电池,实现32.12%的认证效率并提升长期稳定性。该策略优化了钙钛矿晶格中的分子适配,提高了电荷传输和器件寿命。

天合光能钙钛矿/晶体硅叠层电池效率及叠层组件功率双双刷新世界纪录来源:天合光能 发布时间:2025-12-15 16:02:35

12月14日,位于天合光能的光伏科学与技术全国重点实验室宣布,其与怀柔实验室合作研发的210×105 mm²大面积钙钛矿/晶体硅叠层电池,经德国夫琅禾费太阳能研究所下属检测实验室(Fraunhofer ISE CalLab)权威认证,最高转换效率达到32.6%,刷新该尺寸叠层电池效率世界纪录。同时,基于此电池集成的面积为3.1 m²的工业化标准尺寸叠层组件,经TÜV南德意志集团(TÜV SÜD)认证,输出功率达865W,亦刷新了全球光伏组件功率的世界纪录,这标志着中国在下一代高效光伏技术领域取得里程碑式突破。

大阪大学Akinori Saeki团队Angew:手性双面非富勒烯受体实现自旋选择性,推动有机太阳能电池性能突破来源:先进光伏 发布时间:2025-12-13 00:29:01

不对称分子设计是提升非富勒烯受体(NFA)性能的有效策略之一,但以往研究多集中于横向(左右)不对称性。大阪大学Akinori Saeki团队创新性地提出了双面不对称(bifacial)的手性分子设计策略,合成并研究了基于茚并二噻吩(IDT)核心的手性NFA分子:(S,S)-IE4F与(R,R)-IE4F。该设计不仅在垂直方向引入偶极矩,还赋予分子手性,首次在有机太阳能电池(OSC)的体异质结中实现了显著的手性诱导自旋选择性(CISS)效应(自旋极化率高达~70%)。基于纯手性分子构筑的OSC器件取得了8.17%的光电转换效率,是其非手性异构体(meso-IE4F,效率2.36%)的三倍以上。该研究以“Chiral Bifacial Non-Fullerene Acceptors with Chirality-Induced Spin Selectivity: A Homochiral Strategy to Improve Organic Solar Cell Performance”为题发表在《Angewandte Chemie International Edition》。