[ 关键词 ] 相变 热仿真 结构优化
1.前言
机械设计是光伏逆变器整机研发的重要内容,而光伏逆变器本身的结构特点决定了大部分机械件的总体尺寸、空间布局、形状暨材质选择又取决于整机热设计。传统的热设计方法有解析法和实验法。由于在实际产品中热传输途径非常复杂,解析法通常仅具有理论上的指导意义而难以满足工程实际需求。实验法虽然具有准确度高的优点,但是却有耗时长、成本高及难以探测系统内部温度等缺点。而基于流体力学、传热学、数值分析的现代热仿真技术是一种高技术、高速度、低成本的方法,它对优化光伏逆变器的热设计、为机械设计提供合理方向具有重要指导意义。随着商用数值仿真软件的完善,热仿真技术得到了越来越广泛的应用。本文通过产品实例,介绍了利用行业领先的Icepak软件热仿真来指导光伏逆变器结构优化。仿真结果都经过实际产品的实验验证,误差均较小,表明Icepak具有较高的工程实用价值。
2.相变导热垫片的应用
某型单相组串光伏逆变器早期散热方案如图1,热源为BOOST侧晶体管和逆变侧晶体管,晶体管与散热器间为2mm厚陶瓷垫片。为获得更好的导热效果,陶瓷垫片两个底面要预先涂导热膏。在安装时为定位各陶瓷垫片,又需要事先将2个“陶瓷垫片定位塑料框”固定在散热器上。
此方案需为“陶瓷垫片定位塑料框”开注塑模,因此提出改进方法:在散热器对应陶瓷垫片的位置铣16个凹槽,用来放置陶瓷垫片,见图3。
稍后,为消除“铣16个凹槽”的工序,再次更改方案为:在箱体钣金上对应陶瓷垫片的位置冲孔,用来放置陶瓷垫片,见图4。
以上3种方案均要使用导热膏,在装配现场易造成脏污,而且整机装配工艺复杂。
“陶瓷垫片+导热膏”组合上世纪50年代开始使用。为避免使用导热膏,上世纪80年代业界发明了弹性导热垫片,但在导热性能上稍逊于陶瓷垫片。本世纪初相变导热垫片开始投入实用。经热阻测试(1),同样面积同样压力时,“陶瓷垫片+导热膏”组合的热阻大于相变导热垫片。
最终的散热方案采用某型号相变导热垫片,如图5。不再使用导热膏和陶瓷垫片定位塑料框(或散热器铣槽,箱体挖孔),也无需额外的工装和模具。相变导热垫片可局部带背胶,可牢固准确地附着在散热器上。晶体管壳温到达一定数值时,相变导热垫片软化并充满晶体管壳与散热器间的空气间隙。图6为采用陶瓷垫片的整机热仿真结果,散热器最高温度79.88°C,晶体管最高结温104.278°C。图7为初始条件相同时采用相变垫片的整机热仿真结果,散热器最高温度79.86°C,最高结温102.09°C。
2种散热方案具体的对比见下表:

由以上分析可见,采用相变导热垫片后,散热效果更好,而组装消耗工时更低。

图1 陶瓷垫片方案

图2 陶瓷垫片定位塑料框

图3

图4

图5 相变导热垫片方案

图6 陶瓷垫片方案散热器温度场

图7 相变导热垫片方案散热器温度场


图10

图11

图12


图15
散热器翅片间的速度场分布见图16。

图16
3种结构的计算结果对比:


图17
如前后逆变器间插有挡板,则仅相距600mm时,已互不影响,见图18。

作者简介:
索比光伏网 https://news.solarbe.com/201408/01/57511.html

