染料敏化太阳能电池DSSC效率到达13.1%

来源:发布时间:2011-11-16 23:59:59
索比光伏网讯:由台湾交通大学应化系刁维光教授、中兴大学化学系叶镇宇教授与瑞士洛桑联邦理工学院(EPFL) Gratzel教授共同组成的研究团队,日前成功提高「染料敏化太阳能电池」(Dye-Sensitized Solar Cell,简称DSSC)的光电转换效率到达13.1%,以紫质分子取代钌金属错合物作为关键材料,突破钌金属错合物20年来光电转换效率始终停滞在10-11%的困境,该研究成果已于今年11月4日发表于科学杂志(Science),美国化学与工程杂志(C&EN News)以及科学美国人杂志(Scientific American)纷纷撰文报导该项重大突破,此为全球替代能源发展的重要里程碑。

研究团队指出,染料敏化太阳能电池是最新世代的太阳能电池之一,其具有低成本、高效能、制程简易、多色彩、可透视、可挠曲等传统矽晶太阳能电池所没有的优势,因此近年来受到学术及产业界的广泛注意,世界各先进国家无不投入大量人力、物力进行研发。

长期以来,染料敏化太阳能电池的关键材料「染料」被钌(Ru)金属错合物所主导,以钌金属错合物为光敏染料所开发出来的DSSC元件,最高光电转换效能一直维持在11.0 -11.5%之间,在过去十多年的发展中,其元件效能并无显著提升,而且钌为稀有金属且具有潜在的环境污染问题,因此研究学者们无不绞尽脑汁开发新的无钌光敏染料,这其中又以紫质(porphyrin)分子作为光敏染料的DSSC系统最具发展潜力。

研究团队指出,紫质分子可视为一种人工叶绿素(chlorophyll),叶绿素是一种众所周知使植物呈现绿色的色素,它在植物中吸收太阳光进行光合作用而使二氧化碳与水转换成糖类。紫质分子在DSSC中所扮演的角色类似于叶绿素分子在光合作用中所扮演的角色,它可以有效的吸收太阳光的可见光以及近红外光部分再将之转换为电能。

过去以紫质分子作为光敏染料的元件效能不彰,部分原因是一般紫质分子易于堆叠所造成,而交通大学应化系刁维光教授与中兴大学化学系叶镇宇教授共同组成的研究团队,最近研发出一系列具推-拉电子基的高效能紫质染料可有效克服分子堆叠问题,其中一种命名为YD2-o-C8的紫质染料,经瑞士洛桑联邦理工学院(EPFL) Gratzel教授之研究团队利用钴(Co)错合物做为电解质、并与有机染料Y123共吸附而将元件效能大幅提升,在模拟太阳光一半强度照射下达到光电转换效率13.1% (全太阳光照射强度的效率为12.3 %)的世界纪录,这是以钌金属错合物作为光敏染料的DSSC元件自1993年发表10 %、2005年发表11%以来至今的最大突破。

具估计全人类能源的需求在2050年时会到达目前的两倍,而目前全人类最主要的能源--石油将于未来四十年间用罄,世界各国科学家莫不积极寻找替代能源,预期该研究成果发表后,对于未来太阳能产品的应用发展有相当大的助益。

*本文稿件来自台湾,部分文字与中国大陆有出入,但不影响意义。

索比光伏网 https://news.solarbe.com/201111/17/264445.html

责任编辑:solar_robot
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
稳态效率27.32%!海南大学钙钛矿太阳能电池刷新纪录!来源:中国科学报 发布时间:2025-06-26 14:23:56

“27.32%!这一目标我们终于实现了!”日前,海南大学物理与光电工程学院的实验室内响起了欢呼声。该校新能源光电材料与器件团队自主研发的钙钛矿太阳能电池,经中国国家光伏产业计量测试中心认证,稳态光电转换效率达27.32%,这一数值超越了美国国家可再生能源实验室今年2月公布的26.95%效率纪录,以及马丁·格林太阳能电池效率统计表5月收录的27.3%行业标杆值,标志着海南大学在第三代光伏技术领域跻身全球领先行列。

光子倍增技术在晶硅太阳能电池中的应用来源:晶硅太阳能电池技术 发布时间:2025-06-24 10:35:33

晶硅太阳能电池由于带隙约为1.1 eV,其肖克利–奎塞尔(SQ)极限效率约为30%。当前世界纪录的背接触异质结电池效率已达27.3%,接近理论极限。然而常规单结电池存在严重的光谱失配损失:高能光子热化和低能光子透过导致约70%的能量浪费。为突破这一瓶颈,光谱转换技术(包括上转换和下转换/量子裁剪)被提出作为有效途径。在这些技术中,光子倍增(即量子裁剪)可以将一个高能光子“切分”为两个或多个低能光子,潜在地提高光电转化效率。

炘皓新能源联手清华大学入局钙钛矿来源:钙钛矿光链 发布时间:2025-06-20 11:59:42

近日,据国家知识产权局信息显示,绵阳炘皓新能源科技有限公司(以下简称“炘皓新能源”)&清华大学联合申请一项钙钛矿专利,标志着炘皓新能源正式启动钙钛矿领域的战略布局。

北京理工大学:两步法正式钙钛矿电池效率26.13%!钙钛矿从n型向弱n型转变策略来源:钙钛矿太阳能电池之基石搭建 发布时间:2025-06-06 14:45:03

本研究引入了2-吡啶甲醛肟(PO)作为分子掺杂剂,调控 FAPbI₃ 薄膜的电离能和能级结构。PO 通过氢键作用与 Pb-I 框架相互作用,且吡啶环与肟基(-NOH)之间的配位作用提供了较高的电子亲和力,从而提高了钙钛矿的电离能。肟基与吡啶环中的氮还可作为界面缺陷钝化单元。结果表明,2-PO 的引入有效抑制了钙钛矿在结晶过程中及在光照和电偏压条件下运行时碘相关可迁移离子的生成。同时,碘电离能的提升促进了 PbI₂ 与 FAI 之间的反应,减少了薄膜中的残余 PbI₂,从而提升了功函数,并推动钙钛矿从 n

新型多功能空穴选择层提高了钙钛矿-有机叠层太阳能电池的效率和耐用性来源:钙钛矿材料和器件 发布时间:2025-05-27 16:49:25

蔚山国立科学技术研究所(UNIST)、蔚山大学和群山国立大学的研究人员开发了一种多功能空穴选择性层(mHSL),旨在显着提高钙钛矿/有机叠层太阳能电池(POTSCs)的性能。据报道,这种薄膜材料能够同时提高叠层太阳能电池的效率和耐用性。

光子转换:突破效率极限的曙光(上)来源:爱旭股份 发布时间:2025-05-20 16:02:21

当晶硅电池效率达到极限之后,要如何突破晶硅电池理论极限的限制,走向更高辉煌?打破瓶颈的关键在于如何提高太阳全光谱的利用率。光子上/下转换技术的引入,为解决这一瓶颈提供了创新方案,两者的结合有望重塑高效光伏技术的未来格局。

温室屋顶上的钙钛矿太阳能电池可促进植物生长来源:钙钛矿材料和器件 发布时间:2025-04-08 15:50:32

意大利国家研究委员会-微电子和微系统研究所(CNR-IMM)和Cicci Research的研究人员最近研究了菊苣幼苗(Cichorium intybus var. latifolium)在实验室规模的温室中生长的可行性和农艺意义,该温室将半透明钙钛矿基太阳能电池作为屋顶涂层。

魔术揭秘:短波光谱响应优势≠低辐照优势!TOPCon低辐照性能优于BC来源:投稿 发布时间:2025-03-13 16:22:19

近日,某组件厂在公众号上发文称,其在云南昆明某商业建筑屋顶上的BC二代产品单瓦发电量较TOPCon高出3.6%,较HJT高出4.5%;文中一张第三方机构测试的光谱响应对比图,从图上看,在光谱上的紫外短波部分,BC电池的响应有一些微弱优势,想以此证明某厂BC二代技术组件产品优异的低辐照性能,并冠以BC产品“捕光能手”的称号。文章犹如变魔术一样,一下子将短波光谱响应优势变成了低辐照优势。

2024 IEC TC82 WG2 秋季会议光伏组件及零部件标准重点动态解读来源:TUV南德光伏检测认证 发布时间:2024-11-01 15:07:44

10月21至10月24日,IEC TC82 WG2 在中国西安召开了2024秋季会议。来自全球各地的光伏专家在为期一周的会议里,就多项该光伏标准展开了深入讨论。此次中国专家在组件、材料、光伏碳足迹等多个方面提出新提案以及修正意见,充分发挥我国的技术以及产能优势,多个提案获得国际专家认可并予以批准立项。希望今后能继续发挥我们光伏产业垂直一体化的优势,调动上下游积极参加国际标准工作,助力行业高质量发展。

揭示730W量产背后的奥秘:光转技术如何颠覆传统?来源:东方日升新能源 发布时间:2024-11-01 11:44:33

为了获得更高的太阳电池转换效率,电池表面钝化是一个非常重要和关键的步骤。由于较高的体复合速度和表面复合速度会限制电池的开路电压,同时也会降低电池的填充因子FF,所以通过采用高质量的表面钝化层来抑制表面复合,成为获得高效率太阳电池的前提条件。

新国立侯毅Nat. Photon.全面解读:自组装分子调控相均匀性提高反式钙钛矿太阳能电池的效率和稳定性来源:知光谷 发布时间:2024-09-20 09:35:28

最近钙钛矿太阳能电池(PSC)研究的趋势显示出对反式(p-i-n)结构越来越看好,同时与常规结构(n-i-p)结构相比,功率转换效率( PCE )的差距逐步缩小。这种效率提高的一个重要因素是使用自组装分子(SAMs)作为空穴传输材料(HTM)。这些HTM SAMs通常由空穴传输组分、锚定基团和间隔基团组成,其中锚定基团(例如,磷酸)通过化学键与金属氧化物或透明导电氧化物(TCO)基底结合。