橡树形太阳能电池树实现重大突破

来源:Solarbe.com发布时间:2011-09-26 15:29:15

    时至今日,越来越多的现代人渴求赏心悦目的休闲生活,于是对森林情有独钟,喜欢到这种朴素无华的 “绿色”环境里得到充分的休息和美的享受。然而去年冬天,13岁的美国男孩艾登•德威尔冒着严寒到卡茨基尔山徒步旅行时,在森林中注意到树枝丫杈的布局。他灵光一现,确信这种布局可以用“斐波那契数列”解释,有可能揭开一个科学之谜,导致太阳能电池板设计的重大突破。

    早在13世纪,意大利数学家斐波那契就发现,把一个数,将它添加到之前,像1 +1 = 2,则2 +1 = 3,则3 +2 = 5,则5+3=8,则8+5=13,则13+8=21 ,则21+13=34……这一数字系列中,任何一个数字与后一个数字的比都接近0.618,而且越往后的数字,就越接近。这就是著名的“斐波那耶级数”,而0.618这个神奇的数字,则被称为“黄金比率”。古希腊美学家柏拉图将其誉为“黄金分割率”,有趣的是,人们用它可以解释许多现象,诸如黄金分割、兔子繁殖。它还可以在植物叶、枝、茎的排列中得到体现。

    “黄金比率”与大自然结下了不解之缘,植物和动物都和它有着惊人的联系。的确,在树木、绿叶、红花、硕果中,都能遇上“黄金比率”。斐波那契曾研究过“一对兔子每月可生一对小兔,而一对小兔生下一月后便有生殖力,问一年后共可繁殖多少对小兔”这一问题,曾得到1、2、3、……12月后的小兔分别为1、2、3、5、8、13、21、34 、55、89、144、233、377对,这377对即为一年后小兔的对数。前述数列(还可接着写,未写完)称为“菲氏数列”,又称F数列。可以看出,每相邻两项之比,越向后越接近0.618,当项数无限增加时,相邻两项之比为黄金数。如果在“黄金”矩形内靠着三边作一个正方形,则剩下的那部分又是一个“黄金”矩形,可依次再作正方形。把这些正方形的中心按顺序连结,可以得到一条“黄金螺线”。在海洋鹦鹉螺、有甲壳的软体动物、一些动物角质体上,都先后发现了这种与众不同的“黄金螺线”。数学家泽林斯基在一次国际数学年会上指出,树的年分枝数目就是F数列,即枝数的增长遵循前述小兔增长的规律。

    德威尔通过测量惊讶地发现,许多植物萌生的叶片、枝杈或花瓣都有这样一个有趣的现象:它们用黄金分割率0.618来划分360°的圆周,所得角度约等于222.5°。而在整个圆周内,与222.5°角相对应的外角就是137.5°,所以137.5°角是圆的黄金分割角,也叫黄金角。由于任意两相邻的叶片、枝杈或花瓣都沿着这两个角度伸展,因此尽管它们不断轮生,却互不重叠,确保了光合作用。像车前草、蓟草、一些蔬菜的叶子、玫瑰花瓣等,以茎为中心,绕着它螺旋形地盘旋生长,两叶间的弧度为137.5°。投照这种排列模式,叶子可以占有最多的空间,获取最多的阳光,承受最多的雨水
德威尔从中深受启发,认为树枝丫杈的布局一定与光合作用的效率有关。为了探求其中的道理,验证“斐波那契数列”是否能派上用场,他开动脑筋,设计了一项颇有创意的实验。德威尔首先用自己设计的圆柱双量角器工具,确定橡树树枝和树叶构成的螺旋轨迹与树干之间的相对关系,在让计算机程序复制这种模式的基础上,用PVC管建造了一棵按“斐波那契数列”排列的橡树形太阳能电池树;随后建起一个常用的平板模式排列的太阳能光伏电池板,以45度角安装在屋顶;为了观察和比较按橡树分叉排列的太阳能电池板与传统的屋顶电池板阵列在捕获阳光能力的差异,分别在两个装置接上了监视电压的数据记录器。 

    在获奖的论文中,德威尔介绍了实验的设计和研究结果:与传统的平板模式排列的太阳能光伏电池板相比,按“斐波那契数列”排列的橡树形太阳能电池树的表现更优秀,不需要做任何的偏角调整,每天的有效光照时间延长2.5小时,产生的电力多20%。特别是在12月份,当时太阳处在天空中的最低点,无论是收集太阳光的时间还是产生的电力,太阳能电池树都要比太阳能光伏电池板高出50%。

    德威尔解释说,由于树枝按“斐波那契模式”分布,用“黄金分割率”调整了光伏电池特定的间隔和高度,因此使得部分分支在收集阳光时不会阻挡太阳光射到其他的分支。因为光伏电池不是用平板模式排列,形状很像一棵树,所以更加好看。更重要的是,这种树形结构比平板模式更节省空间,并不完全朝南,更适合在城市使用,因为在拥挤的城市中更难找到空间和直射的阳光。 

    这项研究获得美国的临时专利,引起极大反响。德威尔的研究结果之所以令人印象深刻,在于他模拟树木分支,科学排列太阳能电池,大大地提高了能量成生。专家认为,在大多数13岁的孩子把空闲时间花在玩视频游戏或浏览Facebook等网站时,德威尔却以自己的设计赢得了2011年美国自然历史博物馆的年轻博物学家奖。他对大自然的欣赏和敬仰得到大家的认可,实属难能可贵。这是技术领域一种罕见的发现,也是仿生学可以如何极大改善设计的精彩例子。


索比光伏网 https://news.solarbe.com/201109/26/20473.html
责任编辑:潘娜
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
青岛大学张安东、路皓、欧阳丹和北京师范大学薄志山等人JACS :通过协同偶极叠加实现太阳能电池阴极修饰、欧姆接触与缺陷钝化来源:先进光伏 发布时间:2025-12-10 09:49:47

光学带隙测试结果表明,Rh-Py的带隙为2.63eV,其他CILs则分别为2.91eV、2.84eV和3.06eV。进一步实验表明,Rh-Py由于其强分子内偶极矩,能够显著调节银电极的功函数,而其他CILs如TZD-Py、Rh-Th和Rh-Ph则显示出较小的调节作用。这项研究将Rh-Py作为反溶剂添加剂应用于钙钛矿太阳能电池,以实现界面缺陷钝化和能级调节。

东华大学AFM:蒸汽辅助无损封装策略实现高效空气处理钙钛矿太阳能电池的全生命周期调控来源:知光谷 发布时间:2025-12-10 09:47:36

本文东华大学王宏志和张青红等人开发了一种无损封装策略,以实现空气处理PSCs的全生命周期管理。本工作为空气处理PSCs的全生命周期管理提供了一条有前景的途径。

AEM:原位双区域选择性锚定两性离子凝胶实现高效且机械耐用的柔性钙钛矿太阳能电池来源:知光谷 发布时间:2025-12-10 09:46:24

在室内光照条件下,VIPS修饰的柔性器件效率超过40%。

复旦大学赵岩&王洋&梁佳Nat Energy:厘米级无富勒烯锡基钙钛矿太阳能电池实现14.51%认证效率来源:知光谷 发布时间:2025-12-09 14:33:49

富勒烯基电子传输层常用于锡基钙钛矿太阳能电池以实现高功率转换效率,但其存在成本高、合成复杂、电子迁移率低以及与钙钛矿相互作用有限等问题。该研究展示了非富勒烯ETL在锡基钙钛矿光伏中的潜力。研究亮点:高效率与大尺寸兼备:采用非富勒烯ETL材料P3,实现了小面积16.06%和大面积14.67%的高效率,且均通过第三方认证,为锡基钙钛矿太阳能电池的大面积化提供了可行路径。

苏州大学袁建宇Nat. Commun.:原位熵配体工程实现高效率量子点太阳能电池来源:知光谷 发布时间:2025-12-09 14:11:57

本文苏州大学袁建宇等人报道了一种高效的原位熵配体工程策略,使用双磷酸酯来提升有机-无机杂化FAPbI量子点的分散性和电荷传输性能。研究亮点:效率突破:认证效率达18.23%通过DEHP熵配体工程,量子点太阳能电池实现18.68%的最高效率,是目前报道的最高效率之一,彰显该策略在提升器件性能方面的强大潜力。

吴素娟&李永&刘治科AM:硫代羧酸盐介导的缺陷抑制与碘分子清除:实现22.16%高效稳定CsPbI₃钙钛矿太阳能电池来源:知光谷 发布时间:2025-12-09 13:57:01

AP中的硫代羧酸盐基团可强螯合欠配位Pb,钝化缺陷并抑制铅泄露;其含氮部分与I形成氢键,抑制碘空位形成。本工作证明了AP作为高效界面调控剂的有效性,并为稳定高效全无机PSCs的多功能分子工程提供了新思路。高效缺陷抑制与能级优化:AP处理显著提升薄膜结晶质量、降低陷阱态密度,并优化钙钛矿/空穴传输层能级对齐,实现高达22.16%的转换效率与1.29V的高开路电压。

JACS:π-共轭偶极结构:通过协同偶极叠加实现太阳能电池阴极修饰、欧姆接触与缺陷钝化来源:知光谷 发布时间:2025-12-09 13:45:40

通过协同利用分子内偶极与锚定基团-金属电极间形成的偶极,Rh-Py可显著增强界面偶极矩,不仅有效强化内建电场,还优化了有机太阳能电池的欧姆接触,使其能量转换效率突破20%。此外,Rh-Py与Pb之间的强相互作用可有效钝化钙钛矿薄膜中的Pb缺陷。

KHP钝化埋底界面实现高效稳定钙钛矿太阳能电池来源:钙钛矿材料和器件 发布时间:2025-12-05 14:43:00

近日,中国科学院上海高等研究院光源科学中心研究人员成功将邻苯二甲酸氢钾作为多功能添加剂引入SnO2电子传输层,以同步改变ETL性质和SnO2/钙钛矿埋底界面。此外,KHP在ETL中均匀分布,并在热退火过程中逐渐扩散至埋底界面和钙钛矿层,进一步与未配位的Pb离子配位,降低钙钛矿的表面及体相缺陷密度,缓解薄膜内部应力。

郑州大学张懿强AM:双模式分子调控钙钛矿结晶,实现高效稳定的FAPbI₃太阳能电池与组件来源:知光谷 发布时间:2025-12-04 10:34:21

本研究引入二苯基碳酸酯作为双功能分子调控剂,可同时调控FAPbI薄膜的成核与生长过程。这种协同调控机制获得了均匀、大晶粒的钙钛矿薄膜,并显著降低了缺陷密度。因此,基于DPC的钙钛矿太阳能电池实现了26.61%的冠军效率,优于对照组器件。

周二军&于润楠&谭占鳌Nat Commun:通过晶界缓冲调控拉伸应变实现柔性钙钛矿太阳能电池的高效稳定来源:知光谷 发布时间:2025-12-03 09:24:30

本研究嘉兴学院周二军、北京化工大学于润楠和谭占鳌等人通过引入金属螯合物,调控钙钛矿薄膜的纳米力学性能。该策略不仅聚焦于薄膜的纳米力学特性,还揭示了其物理性能与机械柔韧性之间的内在联系。纳米力学-光电性能协同调控:系统阐明了金属螯合物通过静电作用与氢键调控薄膜模量与应变,同步提升载流子寿命与器件稳定性,为柔性光电器件设计提供新思路。

陈雨&彭强EES:介电分子桥实现效率26.60%、高反向击穿电压且稳定的倒置钙钛矿太阳能电池来源:知光谷 发布时间:2025-12-01 15:55:01

本文成都理工大学陈雨和四川大学彭强等人提出了一种介电分子桥策略,采用双氯膦调控钙钛矿结晶、抑制离子迁移、调节界面能带排列并钝化非辐射复合。最优器件实现了26.60%的光电转换效率,最大瞬态反向击穿电压达-6.6V。介电性能显著增强:F-CPP处理使钙钛矿介电常数提升约两倍,器件瞬态反向击穿电压高达-6.6V,反向稳定性大幅提升。高效率与高稳定性兼具:器件效率达26.60%,并在多种应力测试下表现出优异的长期稳定性。