太阳能级硅原材料评测的分析技术

来源:埃文思分析集团发布时间:2009-06-24 11:46:05

R. S. Hockett, Karol Putyera and Larry Wang, 埃文思分析集团, Sunnyvale, CA
lwang@eaglabs.com

发表于SHINE(《光能》杂志)2009年6月刊

引言

本文是有关评估用于制造晶体或微晶硅太阳能电池的固态硅材料的分析技术的综述。一个技术领域的任何综述性文章,由于作者的经验和专业水平的原因,会侧重于某些主题。我们尽可能描述详细。在埃文思分析集团(EAG,以前称为Charles Evans & Associates),我们作为商业服务实验室在仪器分析方面有多年的经验。这些经验侧重于用于工业领域的测试方法和技术,而较少侧重于那些无商业目的的创新性分析学(比如大学或研究机构所涉及的)。
在致力于特定的分析技术之前,了解用于商业材料领域的一种分析技术只是评估硅原料问题的一个部分很重要。典型的取样(cf. ASTM Practice E 122, ANSI/ASQC Z1.4-1993)和硅原料的工艺稳定性也是问题的一部分,是验证测量能力(SEMI E89)的一个过程、全部测量的统计工艺控制,成本效应也很关键(SEMI M56-0307)。这些问题都不简单。
最后的告诫-在光伏产业中由什么来定义光伏硅原料(或太阳能级硅),没有明确的定义,并且各种分析技术可能合适,也可能不合适,这依赖于我们怎样来定义。太阳能级硅的“级”只是宽泛的限制。光伏硅工业,正如它如今所代表的,是一个非常新的工业领域。正因如此,有很多未知的因素,一些人可能会称之为混沌。但是它正生产用于世界范围的产品。这就是我们作为分析人员现在必须要做的。

评判原材料的因素是什么?
在我们的认知中答案是一致的-杂质,是杂质元素,而不是化合物或各种化学态形式的杂质。这是因为太阳能级硅原料在通过高温工艺(1420oC固态硅熔融)转换为多晶硅或多晶硅时,将失去原始材料中的化学键信息。

某种程度上,评判原材料的这些特定的杂质元素取决于太阳能硅片和电池片的设计和制造过程。然而,这些杂质总是包含如下几种:掺杂物(主要是硼和磷)、气体元素(主要是氧和碳)、和过渡金属(尤其是铁)。除了这些常规杂质,杂质还可能包含周期表里几乎所有元素(冶金级硅进一步提纯用作太阳能级硅原料可能引入其它非常规的杂质)。

分析技术综述
原料分析技术包括样品制备,而不单单是指分析本身。原因在于样品制备过程可能会改变我们关注的杂质的浓度,或者会产生对分析有影响或无影响的化学态。举个例子来说,取硅料将其生长为可以用于测量电阻率、少子寿命或傅立叶红外(FTIR)的多晶硅块。生长多晶硅块的过程可能引入氧、碳、氮和铁等杂质,甚至铝等掺杂元素。或者工艺过程中可能会形成一种氧的混合的复杂的化学态,这可能会影响傅立叶红外的测量,或者与氧有关的热施主杂质会影响电阻率。包括样品制备在内的“分析”必须以一种可以严格控制和识别这些因素而不会得出错误数据的方法。因此,我们会将样品制备作为分析技术的一部分来阐述。

首先想到的测量原材料最简单的方法是将硅料转换为可以测试电阻率、少子寿命和FTIR的形式。如果这种新形式是FZ法生长的单晶硅(FZ, SEMI MF1723-1104, SEMI MF1708-1104)生长的单晶硅,经过热施主湮没处理后,从硅锭上切出2毫米厚的小块,这时电阻率的测量可以得出纯载流子浓度、少子寿命可以得出杂质的间接测量结果,FTIR可以得出间隙氧和替位碳的浓度,低温FTIR和PL可以得出B、P、Al的浓度,但是我们必须考虑到贯穿区熔硅锭的杂质分凝系数(SEMI MF 1723-1104)。这种分析方法在上世纪80年代用来分析西门子法多晶硅很普遍,现在可能仍然很普遍。样品制备过程可以在很洁净的环境下进行,氧和碳趋向于形成对FTIR敏感的化学态。对于高纯的西门子法多晶硅这很有效。必须注意的是高纯西门子法多晶硅掺杂和金属的浓度非常低。低温FTIR(SEMI MF1630)对电活性杂质的测量上限是5 ppba,发光光谱(PL) (SEMI MF1398) 同样有上限。这些浓度上限的要求限制了这些技术在高纯光伏硅中的应用。如果存在不同掺杂的相互补偿,那么电阻率本身也不能准确提供掺杂浓度的信息。

我们可以通过上面类似的方法用CZ法制备样品,但是坩锅中氧会被引入,低温FTIR和PL也有如上所述同样的局限性。
我们可以遵循一种类似的样品制备方法,像直接凝固这样的多晶生长工艺。这种情况下,可能引入氧、碳、 氮和铁,氧和碳可能形成沉淀物而不能用FTIR去测量。如果存在多种主要掺杂元素,电阻率将不能给出正确的掺杂浓度。如果我们知道杂质的分凝系数,并且沿多晶硅锭的生长轴作为位置函数来测量电阻率,原理上可以确定掺杂浓度。这需要我们确切地知道作为生长速率函数的分凝系数,并且要排除所有来自热施主的影响,多晶硅本身影响电阻率的因素同样需要排除。

少子寿命测量提供了一种沾污的间接测量方法,至少是对那些会造成少子强散射的元素,除了可以用SPV法识别硼掺杂硅中的铁之外,不可能识别其它特定金属和他们的浓度。尽管少子寿命是一种间接的测量方法,但对很多太阳能电池设计而言,少子寿命仍然是一个关键参数。缺点在于少子寿命低并不能说明如何提高原料的质量。

下列分析技术不要求将原料转换为硅锭或硅块形式。

中子活化分析(NAA)是对从中等到高Z杂质的体相分析最敏感的分析技术,可以测量所有形式的原料。这项技术要求使用位置受限制的中子源,而且分析中核衰减的时间很长,以致于分析结果要花一个月甚至更长的时间才能得到。因此,该技术尽管最灵敏,在商业上的应用还是受到了限制。NAA因其非常高的灵敏度和量化单个元素的能力被用于分析IC级多晶硅中金属元素的测量。

另一种用于IC级多晶硅的分析技术是酸萃取原子吸收光谱(SEMI MF1724)或ICPMS。这种方法用于分析多晶材料的表面金属,不倾向于体相分析。它可应用于任何多晶形式,比如块材、颗粒或粉末。这种测试方法通过空白片和控制片来识别干扰,这种技术要求严格避免沾污。这种测试方法应用不够广泛是因为它不测量体相杂质水平。然而,通过溶解整个样品(小样品),然后用ICPMS分析溶液,该方法还是可能的。

间隙气体分析或气体熔解要求原料的形状是圆筒状以便插进仪器里加热,使得气体(O、 C、N、H)从样品里散发出来并被分析。必须注意的是气体元素可能来自样品表面或体内,但是从体内散发的与化学态无关。这种方法氧的探测极限是1ppm wt, 是有用的。

最后两种技术是辉光放电质谱(GDMS)和二次离子质谱(SIMS),两者都是直接取样技术,不需要改变原料的形态,并且各种形式的样品都可以分析——块材、颗粒、粉末或硅片。样品可能不需要特殊制备,而只是简单的机械处理。两种技术都可以分析周期表里的所有元素(但是探测极限或精度不一定对所有元素或所有级别的原材料都有用),两种分析都与杂质的化学态和电子态无关。在商业领域,两种技术已经开发了应用于不同材料的标准的测试方法。GDMS在高纯金属和合金领域的应用已有超过15年的历史(例如:ASTM测试方法 F 1953, F 1954, F 1710)。SIMS在集成电路领域的应用已经超过20年(例如:ASTM 测试方法 F 1528, F 2139, F 1366, 和 F 1617)。用于光伏硅的GDMS的标准测试方法是由SEMI光伏委员会开发的。SIMS原则上比GDMS的精度更好。

如果同时关注很多杂质元素(最多73种),GDMS元素搜索分析是最经济的方法(相比于SIMS),然而当需要最好的准确性和探测极限时,例如对于掺杂元素B、P的测量,SIMS是最好的选择。SIMS同样可以提供气体元素最好的探测极限和精度,如:碳、氧、氮、和氢等。

GDMS用于PV硅的分析

GDMS分析用阴极溅射。辉光放电形成的正离子轰击阴极(样品),氩(Ar)气是最常用的放电气体,能量从几百到几千电子伏的正的氩离子被加速到阴极(样品)表面,导致试样上层的原子被腐蚀或者雾化。这种轰击导致表面被逐层腐蚀。原子、电子和离子从表面迁移至阴极/样品。随后被溅射的材料参与到放电过程中碰撞导致的离子化过程。在质谱仪中经过质量分离后测量从溅射区域产生的分析离子,这些离子通过相对灵敏度因子( RSF)转换为浓度。浓度单位通常表示为重量的百万分之几(ppm wt)。

传统的GDMS硅的校准可追溯到美国国家标准局的金属硅或钢铁标样(NIST SRMs)。为了提高硼磷掺杂物的测量准确性,EAG开发了校准方案,保证硅中硼和磷的校准和美国国家标准局的标样(NIST SRMs)相一致。
GDMS可用于定量测量6N 或99.9999%纯的材料和更纯的材料中的基本杂质。GDMS测试方法是最经济的,特别是当要检测多种杂质元素(可达73种)时。

下面的表格给出了超高纯度集成电路级硼掺杂硅块(IC Si) 的GDMS分析结果。在这个空白样品中只探测到硼。硼在硅中的探测极限是0.001 ppm wt.

PV硅的SIMS分析

二次离子质谱(SIMS)分析提供光伏级硅(PV硅)在低于6N水平的(有时需要高质量分辨率)杂质最准确的定量分析,同时有极好的探测极限。和需要花几个月才能做完分析的仪器中子活化分析(Instrumental Neutron Activation Analysis, INAA) 方法不同,SIMS可以在几个小时内完成分析。SIMS能够测量周期表里的所有元素,测量和元素的电活性或化学态无关。SIMS测量对于掺杂元素(dopant)(B, P, As, Sb, Al, In)和气体元素(H, O, C, N)尤其有用。SIMS的分析最优化依赖于下表列出的所选择的一次离子束源和检测方案。对几个元素来说SIMS测量成本不高,但是它是一种特定元素分析技术,这个价格不适合于很多元素一起分析。当要进行多元素同时分析时,建议用GDMS方法。

在SIMS分析中,样品由氧(O2+)或者铯(Cs+)源的聚焦一次离子束溅射(sputtering)。在溅射过程中形成的二次离子被加速使其脱离样品表面。二次离子由静电分析器 (electrostatic analyzer)  进行能量分离和由电磁质量分析器(magnetic mass analyzer) 基于质荷比进行质量分离。氧(O2+)离子束溅射用于提高电正性(electropositive) 材料(如硼和金属材料)的离子产率。,铯(Cs+)离子束溅射用于提高电负性(electronegative)材料(如磷 P、砷As、锑Sb 和气体元素)的离子产率。

通过选择正确的一次离子束和优化仪器条件,SIMS能够提供低于ppm到ppt水平的极好的探测极限。下表给出了SIMS所选元素在硅的体相模式(Bulk) 下的探测极限。请注意表中用的单位是单位体积原子数(atoms/cm3)或重量的十亿分之几(ppb wt)。


 
SIMS准确性(accuracy)可以由示踪标样 (traceable reference materials)来确定。而测量的精确性(precision) 则由通过长期研究得出的先进分析方案,精密的仪器调试及控制样品(control sample)来保证。对于硅中掺杂的硼 B、砷As、和磷P,有美国国标准局(NIST)认证的标样。下图给出了硅中硼和磷体相分析的长期精度。即使硼的浓度在1014 atoms/cm3 (0.001 ppm wt),SIMS分析也能达到长期的误差在7.5 % (1 σ)可重复能力。


  
PV硅有包括粉末在内的多种形式。SIMS可用于测量硅片、块状、颗粒、薄片、甚至是大于300微米的粉末。下面的结果(见下图)是从粉末硅样品杂质在单个粉末颗粒里的分析结果,如下面的表格所示,该分析用了5种分析条件。

总之,GDMS能提供高灵敏度和全元素杂质质量浓度分析,SIMS可用于PV硅中最精准的定量,同时也可用于局部化的杂质分析研究。

注释:以上稿件由埃文思分析集团提供、未经许可转载必究!

 


索比光伏网 https://news.solarbe.com/200906/24/4934.html
责任编辑:solarbe太阳能网资讯中心
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
研究报告:中国去年经济增长三分之一来自清洁能源来源:德国之声DW 发布时间:2026-02-09 10:33:04

英国能源研究机构CarbonBrief发表的最新报告指出,2025年,中国经济增长的三分之一以上都是由太阳能、电动汽车和其他清洁能源技术推动带来。报告指出,如果将中国清洁能源行业视为一个国家,其经济规模将位列世界第八。报告指出,中国持续向清洁能源制造业投入数千亿美元,这代表着对全球能源转型持续推进的一项巨大经济和金融押注。

德国获批30亿欧元国家援助计划,加速清洁技术制造来源:TaiyangNews 发布时间:2026-02-09 10:13:22

德国可再生能源行业迎来重大利好。欧盟委员会已批准德国一项价值30亿欧元的清洁技术制造国家援助计划。委员会认定该计划对于加速欧盟向净零经济转型是“必要、适当且相称的”,并与《清洁工业协议》保持一致。该计划是在《清洁工业协议国家援助框架》下获批的,旨在为扩大净零技术及其关键组件制造能力的投资提供财政支持。欧盟的《清洁工业协议》旨在动员超过1000亿欧元用于欧盟境内的清洁技术制造。

联合太阳能阿曼年产10万吨多晶硅项目顺利投产来源:光伏见闻 发布时间:2026-02-09 09:27:07

2月5日,海外规模最大的多晶硅生产基地——联合太阳能公司阿曼年产10万吨多晶硅项目,在阿曼苏哈尔自贸区正式开机。预计每年可支撑40GW太阳能组件生产,发电量足以满足至多1200万户用用电需求,同时每年有望减少880万吨温室气体排放。联合太阳能创始人兼董事长张龙根称,项目对公司、阿曼及全球光伏行业具有变革性意义,在OIA与IFC支持下,将搭建强化全球光伏供应链的基础设施,保障制造商获取符合国际高标准的高品质可追溯多晶硅。

西班牙20GW太阳能硅片工厂即将开工!来源:光伏见闻 发布时间:2026-02-06 09:16:51

西班牙企业Tresca近日表示,将牵头负责Sunwafes公司在西班牙规划的20GW太阳能硅片超级工厂建设,核心目标为加快本土产能落地、优化绿色生产工艺、带动当地高技能岗位增长,依托N型技术路线稳步推进,实现从试点到规模化的跨越式发展,助力欧盟筑牢光伏产业链韧性。西班牙工程公司Tresca已正式受任该项目的业主工程师,负责工厂设计、电网接入、调试验收、安全及性能检测等核心工作。

Nissan推出太阳能汽车来源:光伏前沿 发布时间:2026-02-02 09:27:13

荷兰初创公司Lightyear一直在研发和完善其太阳能汽车充电技术,并与多家汽车制造商合作展示其系统。该公司宣布与Nissan达成合作,将太阳能充电系统集成到一辆演示车中。Lightyear表示,这是其最终将太阳能充电技术推向市场的重要一步。去年夏天,Lightyear的首席执行官BonnaNewman表示,美观是开发任何类型的太阳能汽车时需要考虑的一个重要因素。Lightyear此前曾尝试将太阳能电池板集成到车身中,并实现商业化,但最终未能实现规模化,公司也因此破产。

2025年太阳能硅片出口量飙升40%, 谁在疯狂扫货?来源:光伏情报处 发布时间:2026-02-02 09:20:33

2025年全年硅片出口数据出炉,在此给大家做个更新。2025年1-12月,中国太阳能硅片出口总额19.28亿美元,同比2024年同期的20.49亿美元下降6%。其中,除1月份之外,2025年每个月份进口量均超过2024年同期。

一光伏上市公司实控人被留置来源:东材科技公告 发布时间:2026-01-30 10:09:44

1月28日,四川东材科技集团股份有限公司发布公告称,公司于2026年1月27日收到高金技术产业集团有限公司通知,高金集团于近日收到四川省监察委员会签发的关于公司实际控制人、副董事长熊海涛女士被留置、立案调查的通知书。截至本公告披露日,公司未被要求协助调查。据企查查显示,东材科技是高金集团旗下控股公司,实控人为熊海涛。

泰国发布针对节能投资和安装太阳能屋顶的税收优惠政策来源:荷兰国际财政文献局网站,国家税务总局江西 发布时间:2026-01-28 10:32:09

2025年12月3日,泰国政府发布针对节能投资与住宅太阳能屋顶安装的税收优惠政策,有效期截至2028年12月31日。一是享受企业节能投资和个人住宅太阳能屋顶安装的纳税人,相关款项需支付给已办理增值税登记的企业,并附有完整有效的电子税务发票;二是企业投资的高效机械、设备或节能材料需获得泰国替代能源发展和节能部门颁发的五星级能效标签认证。

美国太空光伏制造商Solestial收购梅耶博格设备,打造100%本土供应链来源:TaiyangNews 发布时间:2026-01-28 08:46:53

美国太空太阳能技术公司Solestial宣布收购瑞士光伏制造商梅耶博格位于德国Hohenstein-Ernstthal工厂的生产设备。Solestial通过收购MeyerBurger的设备,将太阳能电池制造业务转移到美国,以加强供应链控制和国内制造能力战略。Solestial解释称,这一战略收购将使其能够在美国本土内部完成从硅片到电池的完整工艺流程。Solestial与梅耶博格的渊源始于2024年8月,当时双方建立合作伙伴关系,旨在制造太空用柔性太阳能组件。

阿特斯胜诉!美国专利局裁定Maxeon索赔无效来源:TaiyangNews 发布时间:2026-01-26 09:27:36

对于PTAB的最新裁决,阿特斯表示欢迎,并称这证明了公司的技术基础和成熟的法律能力。Maxeon近年来在全球范围内对多家公司提起了类似的专利侵权诉讼,涉及对象包括爱旭股份、通威太阳能、韩华Qcells和RECSolar。截至目前,Maxeon已与通威达成协议;在荷兰对爱旭的诉讼中,海牙上诉法院裁定Maxeon败诉,随后Maxeon撤回了在荷兰的上诉,并于去年年底再次在德国慕尼黑提起诉讼。双方最终达成和解协议,阿特斯同意在2025年第二季度之前停止在日本销售其叠瓦电池组件。

10万吨!阿曼多晶硅工厂Q1投产来源:PV光圈见闻 发布时间:2026-01-22 10:32:16

太阳能多晶硅制造商United Solar Holding已为其位于阿曼的多晶硅工厂筹集了超过9亿美元的资金。

新闻排行榜
本周
本月