方向发展,为公司的持续发展奠定坚实的基础。此外,公司将立足UPS制造主业,积极开发“节能环保、新能源”领域,形成以UPS为核心业务,逐步向与UPS技术同源(逆变器技术)的太阳能逆变、风能发电机组变流等
光伏并网发电系统中起着至关重要的作用,现代逆变技术为光伏并网发电的发展提供了强有力的技术和理论支持。并网逆变器正朝着高效率、高功率密度、高可靠性、智能化的方向发展。并网逆变器性能的改进对于提高系统的效率
方式可分为自激式振荡逆变和他激式振荡逆变。主要功能是将蓄电池的直流电逆变成交流电。通过全桥电路,一般采用SPWM处理器经过调制、滤波、升压等,得到与照明负载频率、额定电压等相匹配的正弦交流电供系统
逆变功能的电路称为逆变电路,把实现逆变过程的装置称为逆变设备或逆变器。 现代逆变技术是研究逆变电路理论和应用的一门科学技术。它是建立在工业电子技术、半导体器件技术、现代控制技术、现代电力电子技术
时候可以快速断开与电网的连接。因此,太阳能逆变器的基本设计标准包括额定电压、容量、效率、电池能效、输出AC电源质量、最大功率点跟踪(MPPT)效能、通信特性和安全性。
图1a:半桥逆变。图1b
零反向恢复特性中受益。
飞兆半导体的Eric指出,在太阳能逆变器拓扑通常也可能包含一个升压级,将输入DC电压提升至充分高于所需峰值输出电压的水平,然后通过DC/AC逆变并入电网。对于升压转换器
。
l 并网逆变器结构
本文提出的单相并网逆变器的主体结构如图l所示,系统采用两级结构,前级DC/DC为Boost升压电路,后级为半桥逆变和LC滤波电路。图l中前级Boost升压电路是为了
系统变得很复杂,不易实现。传统的重复控制器内模如图4所示。
图4中F(s)为滤波函数,通常为一低通滤波器或者小于1的常数,T为重复控制周期。鉴于在并网逆变系统中,死区等因素在一个基波周期重复
太阳辐射能量经过高频直流转换后变成高压直流电,经过逆变器逆变后向电网输出与电网电压同频、同相的正弦交流电流。而独立式发电系统光伏数组首先会将接收来的太阳辐射能量直接转换成电能供给负载,并将多余能量经过
变成高压直流电,经过逆变器逆变后向电网输出与电网电压同频、同相的正弦交流电流。而独立式发电系统光伏数组首先会将接收来的太阳辐射能量直接转换成电能供给负载,并将多余能量经过充电控制器后以化学能的形式储存
两类,一类是并网发电系统,即和公用电网通过标准接口相连接,像一个小型的发电厂;另一类是独立式发电系统,即在自己的闭路系统内部形成电路。并网发电系统通过光伏数组将接收来的太阳辐射能量经过高频直流转换后
直流电,经过逆变器逆变后向电网输出与电网电压同频、同相的正弦交流电流。而独立式发电系统光伏数组首先会将接收来的太阳辐射能量直接转换成电能供给负载,并将多余能量经过充电控制器后以化学能的形式储存在蓄电池
并网发电系统,即和公用电网通过标准接口相连接,像一个小型的发电厂;另一类是独立式发电系统,即在自己的闭路系统内部形成电路。并网发电系统通过光伏数组将接收来的太阳辐射能量经过高频直流转换后变成高压
压器。100kW以上的太阳能发电站可以采用高频变压器绝缘方式或者正激变压器绝缘方式,高频变压器和正激变压器都可以采用非晶和纳米晶合金铁心,工作频率20kHz,可以完全保证90%以上的逆变效率。现在



