,纯氢气,合成氢、混氢、汽油/煤油/溶剂油,氢气检测仪器
B. 氢气储运及相关设备:
储氢槽/储氢罐,氢气感应器,分配器,储氢合金,储氢相关材料,输氢管线、泵、阀,特种运输车辆等;相关设备:气体涡轮 ,膜电极组,其它电池堆材料,气体扩散膜,隔离膜,热利用/热能技术,气电共生系统,散热器,加热器,热水储存槽,热交换器,供应技术:阀门/接头,化学氧化物,压缩机,纳米碳管,泵,送风机,其它相关产品技术
负极(无需添加导电剂和粘结剂),相比于磨碎的Bi2Se3/CNFs和 Bi2Se3纳米片材料(使用导电剂和粘结剂),展现出优胜的锂离子存储性能(图2)。Bi2Se3/CNFs在100 mA g-1 丰富、价格低廉和易于制备等优点,是一类有潜力的高性能锂离子电池负极材料。然而,其较低的电子电导率和离子扩散速率,导致充放电过程中电化学活性较差,电池容量衰减和循环寿命衰减严重,严重阻碍了V-VI族化合物
作为硫的载体材料。中空碳结构可以提高复合电极的导电性,缓解电极在充放电过程中的体积膨胀;FeNi3纳米颗粒可以提高对多硫化物的吸附,催化其快速转化进而增强硫的利用率。得益于理论计算的精准预测及合理的 结构,即可制得负载FeNi3合金纳米颗粒的中空多孔碳球(FeNi3@HC)。
图3. (a) FeNi3@HC 的制备过程示意图。(b, c) SEM, (d, e) TEM, (f
太阳能热利用: 太阳能中央热水系统、家用太阳能热水器、太阳能热泵热水器、太阳能集热系统、太阳能采暖系统、光热光电一体化太阳能产品、太阳能热水器制造设备、太阳能热水器原材料及配件
B. 太阳能光伏 、铅酸蓄电池、智能电池、钠硫电池)、储能电源、超级电容器、可再生燃料电池、液流电池等技术、设备及材料
B. 储能电站及EPC工程:
BMS电池管理系统、PCS储能逆变器、微电网、电动汽车充换电站及相关
、太阳能热水器原材料及配件
B. 太阳能光伏、光热发电: 太阳能并网光伏发电系统、离网光伏发电系统、光伏风能互补发电系统、光伏输配电器材、光伏模块及组件与设备、槽式线聚焦系统、塔式系统、碟式系统 ;各类蓄电池(镍氢电池、锂离子电池、锂聚合物电池、铅酸蓄电池、智能电池、钠硫电池)、储能电源、超级电容器、可再生燃料电池、液流电池等技术、设备及材料
B. 储能电站及EPC工程:
BMS电池管理